10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Formalising Subject Reduction and Progress for
Multiparty Session Processes

Burak Ekici 8@
Department of Computer Science, University of Oxford, UK

Tadayoshi Kamegai &
Department of Computer Science, University of Oxford, UK

Nobuko Yoshida 2@

Department of Computer Science, University of Oxford, UK

—— Abstract

Multiparty session types (MPST) provide a robust typing discipline for specifying and verifying
communication protocols in concurrent and distributed systems involving multiple participants. This
work formalises the non-stuck theorem for synchronous MPST in the Coq proof assistant, ensuring
that well-typed communications never get stuck. We present a fully mechanised proof of the theorem,
where recursive type unfoldings are modelled as infinite trees, leveraging coinductive reasoning. This
marks the first formal proof to incorporate precise subtyping, aiming to extend the typability of
processes thus precision of the type system. The proof is grounded in fundamental properties such
as subject reduction and progress.

During the mechanisation process, we discovered that the structural congruence rule for recursive
processes, as presented in several prior works on MPST, violates subject reduction. We resolve this
issue by revising and formalising the rule to ensure the preservation of type soundness.

Our approach to formal proofs about infinite type trees involves analysing their finite prefixes
through inductive reasoning within outer-level coinductively stated goals. We employ the greatest
fixed point of the parameterised least fixed point technique to define coinductive predicates and
use parameterised coinduction to prove properties. The formalisation comprises approximately 16K
lines of Coq code, accessible at: https://github.com/Apiros3/smpst-sr-smer.

2012 ACM Subject Classification Computing methodologies — Concurrent computing methodo-
logies; Theory of computation — Type theory; Theory of computation — Logic and verification;
Theory of computation — Proof theory

Keywords and phrases multiparty session types, type trees, subtyping, progress, subject reduction,
non-stuck theorem, Coq

Digital Object Identifier 10.4230/LIPIcs.ITP.2025.19
Supplementary Material Software (Source Code): https://github.com/Apiros3/smpst-sr-smer

Funding This work is partially supported by EPSRC EP/T006544/2, EP/T014709/2, EP/Y005244/1,
EP/V000462/1, EP/X015955/1, EP/Z0005801/1, EU Horizon (TARDIS) 101093006, Advanced
Research and Invention Agency (ARIA) Safeguarded Al, and a grant from the Simons Foundation.

1 Introduction

Distributed and concurrent systems rely on message-passing for communication, guided
by predefined protocols. Ensuring protocol conformance is crucial to prevent failures like
deadlocks and mismatched communications. Session types, rooted in process calculi [25, 54],
provide a type-theoretic framework for specifying communication structures. Initially designed
for two-party interactions [24], they were extended to multiparty session types (MPST) to
support multi-participant protocols [17, 66]. MPST have been implemented in various
languages, including Java [39, 4, 28, 29], Scala [52, 2, 64, 9], OCaml [31, 32], F* [69],

@ Burak Ekici, Tadayoshi Kamegai E%nd Nobuko Yoshida;

licensed under Creative Commons License CC-BY 4.0

16th International Conference on Interactive Theorem Proving (ITP 2025).
Editors: Yannick Forster and Chantal Keller; Article No. 19; pp. 19:1-19:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:burak.ekici@cs.ox.ac.uk
https://orcid.org/0000-0002-6602-7906
mailto:tadayoshi.kamegai@merton.ox.ac.uk
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
https://github.com/Apiros3/smpst-sr-smer
https://doi.org/10.4230/LIPIcs.ITP.2025.19
https://github.com/Apiros3/smpst-sr-smer
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Formalising Subject Reduction and Progress for Multiparty Session Processes

Ft [46], Python [48, 12], Erlang [47, 45], MPI-C [49, 43], Go [8, 7], TypeScript [15, 44],
and Rust [11, 41, 42, 63, 33]. Session types have also been formalised in proof assistants,
particularly Coq [22, 19, 20, 35, 21, 34, 6, 60, 13], Idris [5, 27], and Agda [57]. For a
comprehensive discussion, see [65].

MPST describes communication protocols as global types, outlining interactions among
participants, which are then projected into local types for individual processes. A session
represents an instance of a protocol, structuring message-passing. MPST supports various
synchronisation models. In synchronous MPST [16], communication requires real-time
coordination between senders and receivers, ensuring protocol compliance and message order.

This work extends MPST and synchronous communication [16] with a mechanised proof
of the non-stuck theorem using coinductive reasoning over type trees. These trees, derived
from global and local types, represent recursive structures via infinite unfoldings. The proof
exploits type tree properties to refine projection accuracy under subtyping. A key novelty is
integrating subtyping into type checking, unlike prior mechanisation efforts [34, 6, 60] that
prove progress for MPST. In Coq, infinite trees are defined using positive coinductive types,
differing from function-based definitions in [16, Definition A.4]. To ensure that structural
equivalence (isomorphism) of infinite trees is aligned with Coq’s Leibniz equality, we introduce
a coinductive extensionality axiom (Axiom 22); see Remark 23 for a justification of soundness.
Our type system guarantees:

1. subject reduction: if a typed session M reduces to M’, then its typing tree G transitions
via consumption steps (Definition 14) to a new tree G’ that types M’;
2. progress: every session M either terminates or reduces to another session M’.

The non-stuck theorem, which states that “well-typed sessions are free of communication
errors (e.g., label mismatch, polarity mismatch, etc.) and always either normally terminate
or evolve into well-typed sessions,” follows as a corollary of these properties.

Defining structural congruence as a symmetric relation, as in some prior work [2, 16, 50,
17, 18], invalidates subject reduction. To address this, we redefine congruence for processes
and sessions (Table 1), disabling symmetry by removing foldback identities. This issue was
identified and addressed during the formal proof process. The fix, detailed in § 3.3 (see
Rem.17 and Ex.18), highlights the importance of formalisation.

Terms are categorised into processes and sessions, with types divided into channel implicit
global (G) and local types (T). Traditionally, global types validate sessions, while local
types validate processes. Global types define multi-party protocols, while local types specify
individual roles. Both use the recursion binder u to model repetition. The projection relation
maps global types to local ones for each participant. This is the top-down method. Figure 1
illustrates both the subject reduction proof structure and our design choices. We interpret
global and local types onto coinductive type trees, avoiding the p binder by leveraging
circularity of coinduction. Our equi-recursive approach treats recursive types as equivalent
to their unfoldings, mapping both to the same type tree. In our setting, global type trees
(G) type multiparty sessions (M), while local type trees (T) type processes (P). We ensure
that a global type always exists that unfolds into the tree used for typing a given session.
The process typing b, is enhanced by the subsumption rule, allowing a supertype T’ to type
any process of type T. When a well-typed session kg M: G evolves into M’, a global type
tree G’ is obtained by consuming actions of G, ensuring - M’: G'(subject reduction). All
concepts in Figure 1, along with the non-stuckness property, are implemented in Coq [56].
The formalisation is available at: https://github.com/Apiros3/smpst-sr-smer.

Key Insight for Mechanisation. Proving statements that involve multiple coinduct-

https://github.com/Apiros3/smpst-sr-smer

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

B. Ekici, T. Kamegai and N. Yoshida

J/
LN
T—T
I7m Fm
I
P
AN 5

(Hiel pi<1Pi) =M M

Figure 1 Design overview

ive declarations over infinite trees is challenging in Coq. We address this by (vertically)
decomposing a tree into a finite prefix that excludes certain structures (e.g., participants
in balanced trees—Lemma 26), then applying induction to reason about the finite portion
within an outer coinductive goal.

Additionally, we use list structures to encode the finite width of a given tree, rather than
function types or infinite structures such as colists. This choice simplifies proofs about trees,
as it enables inductive reasoning on the width. However, it renders corecursive functions (e.g.,
translations from types to trees) ill-formed, since the inner finite structure prevents them
from being productive. To address this, we axiomatise such functions as coinductive data
types in Coq’s Prop . While not required for the current development, we could leverage
the axiom constructive indefinite description to inject computational content in and prove
existential properties over trees. We believe these design choices are reasonable, as they
scaled effectively and ultimately led to our non-stuck proof for MPST in Coq. We also
employ the Paco library [30, 68], which facilitates coinductive proofs by bypassing Coq’s
syntactic guardedness checks.

Our mechanisation of a core top-down MPST system highlights key challenges, and
designed for extensibility, it supports future adaptations, including merging [16, Definition
3.6] in projection and properties like liveness [67, Definition 12]. See § 5 for details. In
the accompanying library, we employ classical reasoning to conduct case analysis primarily
over coinductively defined predicates. The library comprises around 16K lines of Coq code,
containing 341 proven lemmata and 117 definitions.

2 Synchronous Multiparty Session Calculus

In this section, we introduce the process calculus for sessions, employing a semi equi-
recursive approach. This approach ensures that a recursive process and its unfolded form are
represented identically, while preventing folded versions of an already unfolded process from
being considered equivalent. This distinction plays a key role in establishing the proof of
subject reduction theorem. Further details on this approach are covered in § 2.1.

» Note 1. Throughout the paper, we hyperlink Coq source code to the symbol ¥, while
highlighted text denotes excerpts from the Coq source.

We introduce some preliminaries. Processes interact by exchanging expressions (expr
in Coq), denoted by e. An expression can be a value (e_val), such as an integer, natural
number, or boolean constant, or it may be recursively formed using operators like succ
(e_succ), not (e_not), - (e_neg), > (e_gt), and + (e_plus) The language of processes

19:3

ITP 2025

19:4

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Formalising Subject Reduction and Progress for Multiparty Session Processes

is inductively defined by the following constructors ¥.

. N
o | () | Z ? () . | Inductive process : Type =
P T p,f € 'P €1 p"gl T 'P'L | p_send : part — label —» expr —»> process —> process
. | p_recv : part — list(option process) —» process
lf € then P else P | | p_ite : expr — process — process — process
| p_rec : process —» process
,U/XP | X | p_var : nat — process

| p_inact : process.

The first constructor defines a process that sends an expression e, tagged with label ¢, to
participant p, and then proceeds as P. The second one defines a process that receives a list
of messages from participant p, each tagged with labels ¢;. These messages are then bound
to expression variables x; within the corresponding continuations P;. The constructor “if
e then P else P’” is the conditional process representing the choice between processes P
and P’. We represent inactive processes with 0 and process variables with X. We employ
de Bruijn indices to represent process variables in Coq. Processes can be recursive, thanks
to the p-binder. We assume guarded recursion, meaning (1) recursion always unfolds to a
receive or send, and (2) all process terms are closed—e.g., uX.X is invalid as it violates (1).

» Definition 2 (option lists). An option list of some type A is a list in which each element
is either of type A or the “none” value, denoted by 1.

» Remark 3. In the accompanying Coq declaration process, the p_recv constructor uses
an option list of processes. Non-existing labels are represented as None . Each label maps to
an index in the option list. For example, if the third element in the list is Some P , it indicates
that the label indexed by three has a valid continuation P ; if it is None , no continuation is
associated with that label. Using option lists eliminates the need to search for labels. We
apply this approach throughout the paper when necessary. This method is sound in our
setting, as no label is ever used to identify more than one continuation.

A multiparty session ¥ is parallel composition “|” of participant-process pairs, denoted p < P.

- Inductive session: Type 2
M L p < P | M | M | s_ind : part — process — session

| s_par : session — session —> session.

We employ the notation M ||| M’ to denote the parallel composition s_par M M’ of
sessions, and p < P for the individual case s_ind p P.

2.1 Structural Pre-Congruence and Reduction Rules

The operational semantics for expressions is immaterial and therefore omitted. Instead, we
present the reduction rules for sessions in Table 1 (below the dashed line). These rules rely
on a non-symmeltric yet transitive preorder relation, = (above the dashed line). A discussion
of an issue found in previously published literature [2, 50, 17, 18], which violates subject
reduction due to the use of symmetric and transitive congruence, is postponed to Remark 17
and Example 18, as it becomes more apparent under the typing rules listed in Table 2.
The rule [ro-unr] permits treating a recursive process, within a session, and its unfoldings as
congruent, but not vice versa. The rule [po-rerM] extends this idea, allowing the reordering of
participant-process pairs in parallel compositions.

» Notation 4. The notation [, ; ps<P; represents a session composed of parallel compositions
pi<P; foralliel.

The [r-com] rule in Table 1 governs the synchronous interaction between participants p and
g such that g sends an expression payload e towards p with the label ¢; and continues as

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/process.v?plain=1#L11-L17
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L9-L11

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

B. Ekici, T. Kamegai and N. Yoshida

J is a permutation of I

[PO-UNF] [PO-PERM]
pauX.P|M = paPuX.P/X]| M Hie[piqpi = Hjerdej
viel jel elvw
[R-comM]
P iera?i(wi).Pi | a<plti(e)Q | M — p<aPjfv/z;] | qaQ | M
e | true M= M1 Mi— Mz May= M,
[RT-1TE] [R-STRUCT]

paifethenPelseQ | M — p<aP | M My — M)

Table 1 Session Structure Pre-Congruence (top) and Reduction Rules (bottom): we omit [rr-1TE]

the process Q. In the meantime, p awaits to receive the payload, performs the label match
immediately after the reception, substitutes the value v (obtained by reducing the expression
e, e | v) within the process P; with the expression variable z;, and resumes as is. If some
participant p behaves as a conditional process if e then P else Q, it resumes as P in case
the expression evaluates to true, governed by the [rr-rre] rule, or as Q otherwise, [re-rre] rule.
The rule [r-struct] ensures that session reduction respects the pre-congruence = of sessions.
We formalise these rules employing a Prop valued relation over sessions, betaP ¥:

Inductive betaP : relation session 2
I ooo
| r_comm : V (p q : string) (xs : list (option process)) (y : process) (1 : nat) (e : expr) (v : value) (Q : process) (M : session),
onth 1 xs = Some y — stepE e (e_val v) —
betaP (((p <— p_recv q xs) ||| (g «— p_send p 1 e Q) Il M) (((p « subst_expr_proc y (e_val v) 0 0) |l (g += @) [II M)
r_struct: V (M1 M1’ M2 M2’: session), unfoldP M1 M1’ — unfoldP M2’ M2 — betaP M1’ M2’ — betaP M1 M2.

1 ™ member y of the

As part of the r_comm constructor, the function onth computes the
continuation option list of processes xs . The expression e is evaluated to the value e_val v
by the stepE predicate ¥, and the corresponding expression variable is substituted into
y using the subst_expr_proc function ¥. The unfoldP predicate ¥ within the r_struct

constructor represents the pre-congruence relation =.

3 Type System

This section covers fundamental concepts such as types, type trees, and key operations like
projection, consumption, subtyping, and typing, which underpin the non-stuck theorem. In
§ 3.5, we introduce type tree contexts and the grafting operation, allowing traversal of finite
prefixes in infinite trees—essential for reasoning about balanced infinite trees.

3.1 Types and Trees

Global types provide a high-level overview of the communication protocol, offering a compre-
hensive perspective on the interactions and roles of all participants involved.

» Definition 5 (global types). ¥ Global types are inductively generated by:

S n= nat | int bool Inductive global : Type 2
— | g_end : global
G = end | t | ,UtG ‘ | g_var : nat — global
| g_send: part — part — list(option(sort*global)) —> global
p—q: {éz (Si)-Gi}iEI | g_rec : global — global.

The constructor p — q : {¢;(S;).G;}icr denotes a communication from participant p to
participant q with a set of messages, each identified by a label /¢;, payload sorts S;, and

19:5

ITP 2025

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L46-L68
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/expr.v?plain=1#L44-L85
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/process.v?plain=1#L129-L139
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L29-L38
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L24-L28

19:6

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

Formalising Subject Reduction and Progress for Multiparty Session Processes

continuations G;. The end signals the end of the protocol. Recursive types are enabled by
the p binder, and t represents type variables. We assume guarded recursion. That is, after a
finite number of unfoldings, a u-type either allows an arbitrary sequence of communication
choices or reaches termination—ut.t is not a valid type. Similar to the case of processes, we
use de Bruijn indices to represent global type variables (also for local types; see Definition 10).
We develop sorts as a variant in Coq with constructors snat , sint and sbool .

A tree structure can be derived from a global type, where recursive types are represented
by their infinite unfoldings. Using the equi-recursive approach (rightmost rule in Def. 7),
we represent ut.G and Glut.G/t] with the same tree, as their intensional behaviours are
identical.

» Definition 6 (global type trees). ¥ Global type trees are coinductively generated as follows.

G u= end | p—q:{li(S)Glier o

| gtt_send: part — part — list(option(sort*gtt)) — gtt.

» Definition 7 (global types — global type trees). ¥ Translating global types into global type
trees is handled by the relation 9.6 >G> Prop, with the following coinductive rules.

Viel, Gi %G GlutG/f % G

p—q:{li(S:).Gslier g, p—q:{li(S:).Gitier end 75 end ut.G 9.6

» Example 8 (translation). We present a global type G and its corresponding type tree,
where internal nodes denote communications (p — q), and leaf nodes represent either payload
types or end. Edges link internal nodes to a payload (¢7) or a continuation (¢°).

—

2
G — it s o 010001t 9, ool /ﬁf/ gp\end
—HEP T £2(nat).end a 2
lo nat

We encode the relation 2 in Coq as shown below.

Inductive gttT (R : global — gtt — Prop) : global —» gtt —» Prop =

I 5ae
| gttT_rec: V G Q G’, subst_global 0 0 (grec G) GQ — R QG — gttT R (g_rec G) G’.
Definition gtt7C G G 2 paco2 gttT bot2 G G’.

Both g_rec G and its unfolding @ map to the tree G’ . The subst_global relation ¥
handles unfolding, using 0 s for sort and global type variables as de Bruijn indices.

» Remark 9. Formalising translation in Coq follows the greatest fized point of the least fixed
point technique using the Paco library [30, 68]. We define an inductive Prop predicate
gttT , acting as a generating function. It is parametrised by a relation R with the same
signature, accumulating knowledge during coinductive foldings of gttTC . The greatest fixed
point is derived using paco2 (as long as the generating function is monotone— gttT meets

this condition as it is monotone ¥), initialised with the empty relation bot2 . The suffix 2
indicates that the generating function has arity 2: global and gtt .

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L11-L13
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?option=1#L80-L85
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?option=1#L64-L75
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L99-L118

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

B. Ekici, T. Kamegai and N. Yoshida

» Definition 10 (local types). ¥ Local types are inductively generated as follows.

Inductive local : Type =
I | 1_end : local

T == end | t | ptT !
1_var : mat — local
e, PU(S) T | &gicr PPL(S) T ime | B o

| 1_send : part — list(option(sort*local)) —> local
| 1_recv : part — list(option(sort*local)) —> local.

The constructor &, ., p?¢;(S;).T; denotes external choice (branching) interactions with a
set of messages towards participant p with labels ¢;, payload sorts S; and continuations T;
while @iel p!4;(S;).T; stands for internal choice (selection) and specifies a set of messages
from p with labels ¢;, payload sorts S; and continuations T;.

We derive tree structures from local types, similar to the global types (Definition 7),
except that internal nodes represent branching (§7) or selection ().

» Definition 11 (local type trees). ¥ Local type trees are coinductively generated as follows.

T = end | @ p'zz(sz)Tz | CoInductive 1tt: Type &
i€l | 1tt_end : 1tt
& p?g(s) T, | 1tt_send: part — list(option(sort*ltt)) — 1ltt
sel M=) e | 1tt_recv: part —» list(option(sort*ltt)) — 1tt.

3.2 Projection and Consumption

Projection extracts local type trees for a participant from global type trees, while consumption
evolves global type trees by consuming communication actions.

» Notation 12. We write p €, pt(G) to indicate that p appears in the global type tree G .

» Definition 13 (projection). ¥ Projection onto a participant r is the largest relation
[r: G—= T — Prop coinductively defined by the following rules.

ViEI, G; rrTi Viel, G; rrTi
[ps] [PR]
r—q:{€:(S:).Gi}ier Ir @Z_qui(si)-Ti p—r:{li(Si).Git}ier I &icr q?4:(S:).Ts
Viel, ré¢{p,aq} VjelLrept(G) G T r ¢ pt(G)
[pc] = [PE]
p—a:{li(S:).Gitier It T G |r end

Projection defines a participant’s role within a given protocol—here with a tree representation.

Clearly, participants that do not occur have no specific role in the protocol, which is what
rule [re] states. Projecting onto the sending (resp. receiving) participant at the root of a

given global type tree results in a local type tree featuring an internal (resp. external) choice
where the root is the receiving (resp. sending) participant and

branches are local type trees obtained by coinductively applying

. s § p—q & p?
projection to the branches of the initial global type tree as estab
lished by the rule [ps] (resp. [pr]). The rule [pc] states that if a 05 ZH
given global type tree begins with a communication from p to q, it pP—aq Ir & p?
can be projected onto r, with r ¢ p, q, resulting in some local type 0 ‘ ©§ \

tree T if, for all continuations, r is involved (highlighted) and their
projection onto r is defined to be T—known as plain merging.

The highlighted condition is crucial as it prevents undesirable scenarios, such as the one
depicted in the figure on the right. We develop projection in Coq as follows.

19:7

ITP 2025

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/local.v?plain=1#L26-L31
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/local.v?plain=1#L11-L14
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/projection.v?plain=1#L9-L32

19:8 Formalising Subject Reduction and Progress for Multiparty Session Processes

Variant projection (R: gtt — part — 1tt — Prop): gtt — part — 1tt — Prop 4
[ooo

| proj_cont: Vpqrxsyst,p#q — q#Tr — pF#r — isgPartsC r (gtt_send p q xs) —

Forall2 (fun u v => (u = None A v = None) V (3 s g1, u=Some(s, g A v==SomelARgr1l)xsys —

isMerge t ys —> projection R (gtt_send p q xs) r t.

Definition projectionC g r t 2 paco3 projection bot3 g r t.

241
22 For the global type tree gtt_send p q xs, the list ys contains the projections of every
23 external choice found in the list xs , as ensured by the Forall2 condition. Additionally,
24 isPartsC ¥ checks whether a participant occurs in a global type tree by verifying if it is
25 a member of the type from which the tree is extracted. This condition is the highlighted
26 case in Definition 13. The isMerge ¥ predicate indicates that the projections of the entire
27 continuation onto the participant r (distinct from p and q) are identical and equal to
s some local type tree t . Therefore, the projection of the global tree onto r resultsin t . In
29 the rest, we use the notation G [, T to represent the proposition projectionC G p T .
250 Global types trees, evolve by consuming communication actions. This allows sessions to

»1 remain well-typed even after taking several [steps. See Theorem 35.

2 Definition 14 (global type tree consumption). ¥ The step (consumption) relation \p EN
»3 q: G— G — Prop over global type trees, is defined using the following coinductive rules.

Viel, 3kelt=1 viel, {rs}n{p,a}=0 Vjel, {p,q} Cpt(G;)
254 [sE] [sN]

(p— q: {€:i(Ss)-Gitier) \p 4 q Gk (r —s: {€:(Si).Gi}ticr) \p 5 q(r—s:{0(S:).Gi\p 4 qtier)

25 A tree that begins with a communication from p towards q, p — q: {£;(S;).G; }ier, can

26 consume the communication p LN q according to the input label f;, provided that it
»s7 represents a valid branch. Once this communication is consumed, the tree transitions into the
s subtree Gg, as specified by the [sg] rule. The [sv] rule ensures that the communication p LN q
20 is consumed coinductively across all continuation branches of the tree r — s : {£;(S;).G; }ier,
%0 as long as all participants are distinct and both p and q are explicitly present in every branch
s (highlighted). The relation is undefined in any other case, and developed in Coq as follows.

Variant gttstep (R: gtt — gtt — part — part — nat — Prop): gtt — gtt — part — part — nat — Prop S

I 5ae
| stneqg: Vpqrsxsysn,p#q > r#s - r#p > 1r#q > s#p — sF#q —

Forall (fun u => u = None V (3 s g, u = Some(s, g) A isgPartsC p g A isgPartsC q g)) xs —

Forall2 (fun u v => (u = None A v = None) V (3 s g g’, u = Some(s, g) A v = Some(s, g’) A Rgg’pqn)) xs ys —

gttstep R (gtt_send r s xs) (gtt_send r s ys) p q n.

Definition gttstepC gl g2 p q n 2 paco5 gttstep bots gl g2 p q n.

262
263 The condition with Forall2 ensures that the relation is coinductively applied over the
%4 list of continuations in xs , producing ys, where each branch takes the intended step.
s Meanwhile, the condition with Forall ensures that participants p and q appear in every

26 branch, validated by isgPartsC. We define the predicate multiC ¥ to handle the reflexive

27 transitive closure of the gttstepC relation. We use the notation G \p = q G’ to represent

268 the proposition gttstepC G G’ p q n .

269 3.3 Subtyping

20 Subtyping refers to a relation between types that allows one type (the subtype) to be used
a1 in place of another type (the super-type) in any context without causing type errors. This
o increases the flexibility of the type system.

oz » Definition 15 (subtyping). ¥ The subtyping relation <: T — T — Prop owver local type
s trees is coinductively defined by the following rules:

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/part.v?plain=1#L15-L17
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/merge.v?plain=1#L9-L12
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/step.v?plain=1#L9-L25
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L71-L74
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/local.v?plain=1#L196-L205

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

B. Ekici, T. Kamegai and N. Yoshida

viel, S;=3S; T;<T; Viel, S,=<S; T;<T,
end < end @ pli(S:).Ti < @EIUJ £;(SH). T} &zeIque(S &elp?g s).T

Intuitively, a subtype permits fewer internal choices and requires more external ones. The

symbol =< denotes subsorting, the least reflexive relation over payload sorts (e.g., nat < int).

Variant subtype (R: 1tt — 1tt — Prop): ltt — 1tt — Prop =

| sub_out : V p xs ys, wfsend subsort R xs ys —> subtype R (ltt_send p xs) (ltt_send p ys).
Definition subtypeC 11 12 £ paco2 subtype bot2 11 12

The subsort construct encodes the subsorting =< relation while wfsend ¥ ensures that
types (resp. sorts) in xs are subtypes (resp. subsort) of those in ys structurally, and
allows ys to contain trailing sort - type pairs. We use the infix symbol < to denote the

subtypeC relation and the symbol =< for the subsort relation in the rest of the paper.

3.4 Typing Rules

We introduce type systems that govern processes, and sessions. Typing rules for expressions
are folklore typ_expr ¥ thus skipped. Table 2 presents rules for processes and sessions.

» Remark 16. Processes and sessions are typed with local and global type trees rather than
types themselves, allowing greater flexibility by abstracting away challenges of recursion. A
session M is then well-typed, = M: G, if G is the tree representation of some global type G,
namely G 5 6. Apart from that types do not play a critical role in the system we formalise.

ILX: Tk, P: T I, P:T TLT
————— [TEND] ———————=[TVAR] ————————— [TREC] ; [TsuB]
', 0: end LX:TH,X:T Tk pXP: T TH,P:T
I'kse:bool I'H,Pi: T T'H,Pa: T Viel, T xz;:Sit,Pi:T;
p [TITE] [TIN]
Fp if e then Py else P2: T 'y Z cr p?li(zi).Ps: &icr P’ 20:(S:). T
Thoe:S THP:T viel, Glp,T, F,Pi:T; pt(G)C {pi|icl}
[TOUT] [TsEss]
I+, plé(e).P e ple(S Fm ierpi <Pi: G

Table 2 Typing processes and sessions

» Remark 17. We now discuss the issue with structural congruence, which arises in several
previous works on MPST [2, 50, 17, 18]. These studies adopt a congruence relation, =, based
on the axiom pX.P = P[uX.P/X] which lets a recursive process and its unfolding to be
congruent in both directions. This violates the subject reduction, as the following statement
does not hold:

Assume I' -, P : T and P = Q. Then we have I' -, Q : T.

» Example 18 (Counterexample). Let P be p?4(z).pl¢'(x).X. Then we have: F, P[uX.P/X] :
T, where T = p?¢(bool).p!¢'(bool).p?l(nat).p!¢’(nat).T. However, ¥, uX.P : T. By inverting
the typing rules defined in Table 2, it can be established that if ' - uX.P : T” for some T”,
then T” must be a supertype of some T’ where T’ = p?{(S).pl¢’(S).T’. Notably, for any sort
S, T is not a supertype of T'. Therefore, types are not preserved under folding.

Our solution is to replace the structural congruence = with a pre-congruence = where
the foldback identities are disabled by the rules in Table 1. This is solution minimal in
formalisation and already imported by some recently published work [61, 3].

19:9

ITP 2025

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/local.v?plain=1#L187-L194
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/typecheck.v?plain=1#L12-L32

19:10

303

304

305

306
307
308
309

310

311

312
313
314
315
316
317

318

319

320
321
322
323
324
325
326

327

328
329

330
331
332
333

334

335

336

337

338

Formalising Subject Reduction and Progress for Multiparty Session Processes

Formalising process typing rules typ_proc ¥, we maintain two contexts: ctxS for
expression-sort pairs and ctxT for process-type pairs.

Inductive typ proc: ctxS — ctxT —» process —» 1ltt —» Prop &
| tc_sub: V cs ct p t t’, typ_proc csct pt — t < t’ — wfCt’ — typ_proc cs ct p t’
| tc_rec: V cs ct p t, typ_proc cs (Some t :: ct) pt — typ_proc cs ct (p_rec p) t ...

The predicate wfC ¥ within the tc_sub constructor ensures that the local type tree t’
is extracted from a local type 1t such that 1t is guarded, and its continuations are neither
all None nor empty—well-foundedness property. We employ the notation Gs Gt - P: T
and Gs F e: S to denote the propositions typ_proc Gs Gt P T and typ_expr Gs e S. The
typing rule for sessions typ_sess ¥ is implemented as follows.

Inductive typ sess : session — gtt — Prop =
| tsess: V M G, wigC G — (V pt, isgPartsC pt G —> InT pt M) —> NoDup (flattenT M) —»
ForallT (fun p P => 3 T, G |p T A nil nil - P: T) M — typ_sess M G.

The predicate ForallT applies a property over participants and processes to every parallel
composition within a session. The function flattenT extracts all participants from a session
in a list, while the inT function checks if a specific participant is present in the session. A
session M is well typed by a global type tree G if for every composition p< P in M, the
type G is projectable onto p to yield a local type tree T , and the process P conforms to
T . The session M must not contain any duplicate participants (NoDup (flattenT M)). If a

participant appears in the global type tree G, it must also be present in the session M.

» Note 19. The weakening wfgC G ¥ in tsess guarantees the existence of a global type,

from which the tree G —typing session M —is derived using the translation in Definition 7.
The purpose of using inductive syntax alongside coinductive semantics is to lift syntactic
identity among types to a semantic notion of equivalence through translation employing
equi-recursion, thereby simplifying property proofs. A similar outcome could, of course, be
achieved by defining types directly using coinductive syntax.

We prove translation “well-behaved” by showing that a global type and its unfolding
translate to the same tree ¥. To illustrate a translation, we verify Example 8 #. Also, in the
rest, parameters in the theorem statements are universally quantified unless otherwise stated.

Lemma 20 inverts process typing rules for two cases. See inversion.v ¥ for all cases.
» Lemma 20. ¥ Given Gs Gt - P: T,

(a) If P is of the form p_recv p xs , then 3 option list ys of sort-local type tree pairs such
that (1tt_recv p ys) < T and for all processes Q in xs and sort-local type tree pairs
(s, t) in ys, we can reason that (Some s :: Gs) Gt - Q: t .

(b) If P is of the form p_send p 1 e Q, then 3 sort S and local type tree T’ such that
Gs - e: S, Gs Gt - Q: T’ , and (ltt_send p (+[1] (Some (S,T’)))) < T.

The function +[n] (called extendLis ¥ in the code) takes an instance a: A and returns
an option list of type A , where the first n elements are None , and the n " element is a .

3.5 Grafting, Balancedness and Well formedness

We introduce global type tree contexts I'g ¥, representing finite prefixes of a global type tree
G by truncating the infinite continuation at specific nodes, leaving holes at those points.

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/typecheck.v?plain=1#L36-L56
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L151
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L39-L44
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L147
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L378-L394
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L427-L467
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/inversion.v
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/inversion.v?plain=1#L9-L14
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/header.v?plain=1#L88-L92
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/gttreeh.v?plain=1#L10-L12

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

B. Ekici, T. Kamegai and N. Yoshida

a
ppy— X Inductive gtth: Type =
PG = p—qQq: {61 (SZ)'FGi}ZEI ‘ []7, | gtth_send: part —> part — list(option(sort*gtth)) —» gtth
| gtth_hol : nat — gtth.

» Definition 21 (Grafting). ¥ The grafting operation constructs a global type tree G by
filling all holes in an input context I'c with non-L elements of a specified option list of global
type trees [Go, ..., Gp], denoted T'g[Go,...,Gn] = G. See Figure 2 for an example.

. , P—a .
b P q c o 5
14 4 C
1 2 14 P
C 1 4
4 P 2
P G bool Go
[lo a—p

qa—p

1—‘G - P c nat FG [G07 J—v G27 G37 G47 GB] = & Zi e
Z. 54 @C ZP
Zg fz 3 4
int Gy
int [1a G3 nat
[]s nat

Figure 2 Grafting Example

bool

The grafting approach is used to inductively track finite prefixes of global type trees
through contexts, offering a way to gain insights into infinite trees. The procedure for
associating holes with global type trees for grafting purposes relies on how the holes are
identified. In the gtth declaration, we make use of naturals to identify the holes. We then

accordingly clarify a method for this association in the Coq declaration typ_gtth of grafting.

Inductive typ gtth : list (option gtt) —» gtth —» gtt —» Prop =
| gt_hol : ¥V n 1 gc, onth n 1 = Some gc — typ_gtth 1 (gtth_hol n) gc
| gt_send: V 1 p q xs ys, SList xs —
Forall2 (fun u v = (u = None A v = None) V (3 s g g’, u = Some(s, g) A v = Some(s, g’) A typ_gtth 1 g g’)) xs ys —
typ_gtth 1 (gtth_send p q xs) (gtt_send p q ys).

The gt_hol constructor indicates which element from the option list 1 is used to fill each
hole: the n*" element of 1 fills gtth_hol n, provided it is not Nome . In the gt_send
constructor, the condition SList xs ¥ ensures that the list xs contains Some continuation
context, rather than being entirely composed of None values. Furthermore, the condition
making use of Forall2 guarantees that all holes (gtth_hol) in the continuation list xs

are filled with gtt s from the list 1, resulting in a list of global type tree continuations ys .

The gtth declaration allows a single natural number to reference multiple holes within
a type tree context. In this case, holes are grafted with the same gtt . This design poses no
issues as gtth is used only for grafting within typ_gtth . If the list of gtt s lacks enough
information to fill even one hole, the grafting operation is undefined. Unused elements in the
list play no crucial role either. Theorems in the paper consider only those used in grafting.

The grafting aids proofs with infinite trees. One such example is the partiality of the
projection ¥: if projecting a well-formed (Definition 24) tree G onto a participant p results in
trees T1 and To, then T; = Ty, where “=" is Coq’s Leibniz equality. We omit the proof here
but emphasise that to establish this in Coq, we use the coinductive extensionality principle
(Axiom 22) to treat an isomorphism between local type trees “~” ¥ as Leibniz equality.

» Axiom 22 (coinductive extensionality). ¥ VT; and Ta, we assume Ty ~ Ty = T; = Ts.

19:11

ITP 2025

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/gttreeh.v?plain=1#L33-L37
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/header.v?plain=1#L81-L86
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection_helper.v?plain=1#L672-L676
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L45-L50
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L52

19:12

368

369
370
371

372

373

374
375
376
377

378

379

380

381

382

383

384

385

386
387
388

389

390
391
392

393

394

395

396

Formalising Subject Reduction and Progress for Multiparty Session Processes

» Remark 23. In Coq, local type trees can be characterised by the type lttmapA , representing
partial functions that map paths—lists of natural numbers list nat and Booleans bool —to
nodes node [16, Definition A.4]. These nodes include actions like send 1node_send , receive
lnode_recv , end 1lnode_end , and payload sorts 1lnode_s , with the Boolean flag indicating
whether to consider payload sorts or continuations in the tree.

Inductive lnode : Type &
| 1node_end : lnode
| lnode_send: part — 1lnode
| lnode_recv: part — lnode
| lnode_s : sort —» 1lnode
Inductive lttmapA: list mat — bool —» lnode —» Prop 2
| lend : lttmapA nil false lnode_end
| lcons : V p wgn 1L, lttmapA w false (lnode_send p) — In 1 L — 1lttmapA (w ++ [1]) false gn
| lcsend: V p w gk 1, lttmapA (w ++ [1]) false (lnode_send p) — lttmapA w false gk
| lcsort: V w s gk 1, lttmapA (w ++ [1]) true (lnode_s s) — lttmapA w false gk ...

We justify that Axiom 22 does not introduce unsoundness in Coq by leveraging isomorph-
isms between coinductive and function types [1]. Specifically, 1tt with the coinductive
extensionality is isomorphic to lttmapA with functional extensionality. Thus, characterising
local type trees using (1) partial functions with functional extensionality and (2) positive
coinductive types with coinductive extensionality are equivalent. Thus, Axiom 22 is sound.

» Definition 24 (Balancedness). ¥ G is balanced, if V subtree G' of G, whenever p is in
participants of G, p €g pt(G’), then Ik € N such that

1. VY paths v, of length k, from the root of G, p is involved in a node along
2. V paths v leading to an end, from the root of G', p is involved in a node along .

Balancedness is best exemplified via its negation. Figure
on the left depicts an example of an unbalanced tree G.

/ \ Observe that the path with labels ¢§ has no r.
G= P:

Well-formedness Global type tree G is well-

nat N . formed (wtgc) if 3 global type G, where recursion is
fs & guarded and all continuations are both non-empty and

end non-1, such that G 9, G and G is balanced.
» Note 25. In all of the following statements, global type trees are assumed to be well-formed.
Additionally, we write p €, pt(Gl) when p appears in the global type tree context G1 .
Also, balancedness is a regularity condition that ensures liveness, meaning that all sends
and receives in the protocol prescribed by a given type tree are eventually executed. For
unbalanced trees, the grafting technique described above cannot be applied; specifically,
Lemma 26 cannot be established.

» Lemma 26. ¥ If p <, pt(G), then 3 an option list L of global types and a context G1
such that typ_gtth L G1 G with p ¢ pt(Gl) . Fach element filling a hole in G1 from L
is of gtt_send p q lsg, gtt_send q p lsg or gtt_end shape, for some participant q and
option lists 1sg of sort-global type tree pairs.

The statement asserts that a global type tree can be formed by grafting a tree context,
excluding a specific participant, by a list of global type trees with particular structure.

Proof follows by induction on the length k of the paths (gttmap ¥) within balanced global
type trees.

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L140-L144
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L147
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/decidable.v?plain=1#L205-L210
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L15-L19

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

B. Ekici, T. Kamegai and N. Yoshida

4 Proof of Non-stuck Theorem in Coq

This section presents a Coq formalisation of the non-stuck theorem for synchronous multiparty
session types, proven through subject reduction and progress. Figure 3 illustrates the
interrelations among the lemma/theorem statements discussed in § 3 and § 4.

(Lem z(sm@em 31
\

(Lem 29

Lem 32)

(Lem 37 }—{Thm 38— Thm 40)

Figure 3 Dependency Graph

(Lem 2%3}

(Lem30) (Lem 34

» Notation 27. We write 1; to refer to onth i 1, where i is some index and 1 is a list.

» Lemma 28. ¥ Ifwe have G |, (1tt_send q 11) , G 4 (1tt_recv p 12) , (snd 11), = T,

(snd 12)n =T’ and G \p = q G’ then G’ [, T and G |q T° hold.

This statement preserves projections of global type trees under the consumption relation.
Given a well-formed tree G with projections onto p and q, where p sends to q with
continuations 1, , q receives from p with continuations 1, , and n ' elements of these
lists are T and T’ . If the communication step “p to q ”in G is consumed with the n "

continuation, the resulting projections onto p and q yield T and T’ .

» Lemma 29. ¥ Given G |, (1tt_send q 11) , G [q (1tt_recv p 12) , (snd 11), = T,

(snd 12)n =T’ , G \p = q G’ and G |, T°’ ,3 L such that &’ | L and L = T’’ .

The statement is a variation of Lemma 28 in that the final projection is not restricted to the
participants involved in the consumed communication step.

» Lemma30. ¥ Given G |, (1tt_send q 11), G [q (Ltt_recv p 12) and (11). = (s, T) ,
d a sort s’ and a local type tree T’ such that (12), = (s?, T’) .

This property ensures the “well-definedness condition” of projections: continuations do not
result in None . Specifically, for a well-formed tree G with projections onto p and q , where

p sends to q with continuations 1; and q receives from p with continuations 1, , if the

n " continuation in 1; is well-defined, then the n *® continuation in 1, is also well-defined.

» Lemma 31. ¥ Given G |, (1tt_send q 11) , G |4 (Itt_recv p 12) and G \p = q G’ ,
dsorts s, s’ and local type trees T, T’ such that (11)n = (s, T) and (12)n = (s’, T?) .

[The statement establishes “well-definedness” of projections with respect to the consumption}

To complete proofs of Lemmas 28, 29, 30, and 31, we apply Lemma 26 (w.r.t. participant
p) and obtain the global type tree context, then proceed by induction on this context.

19:13

ITP 2025

https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L869-L876
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L1313-L1324
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L588-L593
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection_helper.v?plain=1#L1879-L1884

19:14 Formalising Subject Reduction and Progress for Multiparty Session Processes

as > Lemma32. ¥ Given G [, (1tt_send q 11) , G |q (1tt_recv p 12), G \p = q G’ and
a7 for every participant-process pair s_ind u P in M, 3 local type tree T such that G |, T
as and nil nil + P: T, we obtain that for every participant-process pair s_ind u P in M, 3
ne local type tree T such that G’ | T and nil nil - P: T.

This statement connects projectability, consumption, and typability of global type trees.
Given a well-formed tree G, where p sends to q and q receives from p, and G types
the session M which does not contain p and q, if G transitions to a well-formed G’

[43

by consuming the action “p to q (with some arbitrary label n)”, then G’ also types

participant-process pairs in M .
420

a1 The proof proceeds by induction on the structure of M, obtaining the base case thanks to
w22 Lemma 31 and Lemma 29, while the step case follows from the induction hypothesis.

w3 » Lemma 33. » If G|, (1tt_send q 11), G [q (Att_recv p 1o) , (xs)n = (s’,T?) ,
w24 1tt_recv p xs < 1ltt_recv p 1l and 1ltt_send q (+[n] (s, T)) < 1ltt_send q 1i, then 3

ws global type tree G’ such that G \p = q G’ .

This property derives consumption information from projectability and subtyping predicates.
For a well-formed global type tree G with projections onto p and q, where p sends to q
with continuations 1; and q receives from p with continuations 1, , if the n ' elements of
1; and 1, are supertypes of some types T, T’ (rather than being T , T’ —relaxed), then

consuming the communication “from p to q ” using the n *! continuation is well-defined.
426

a7 Inverting the second subtyping predicate and Lemma 30 reveals a sort and a local type tree.
w2 Lemma 26 provides a global type tree context, on which the proof proceeds by induction.

w » Lemma 34. ¥ If we have (Some S :: Gs) Gt - P: T and Gs F e: S then
a0 Gs Gt - (subst_expr_proc P e 0 0): T holds.

[The statement says that substituting a typed expression in a typed process is type preserving}

431

w2 The proof follows from induction on the process P .

s » Theorem 35 (subject reduction). ¥ If we have typ_sess M G and betaP M M’ then 3
s G’ such that typ_sess M’ G’ and multiC G G’ hold.

[T he statement also known as session fidelity [26, Corollary 5.23] or protocol conformance. J
435

s Proof. We start with structural induction on the predicate betaP M M’ and handle the case
a7 for r_comm here, skipping the remaining cases due to lack of space. In this case, we are given

438

(H) typ_sess (((p < p_recv q xs) ||| (g < p_send pne Q) [l M) G,
(Hn) Xxsp = Some y .

a9 with e reduces into the value e_val v, and the goal looks like

(G1) 3 G’ ,typ_sess (p + subst_expr_proc y (e_val v) 00 ||l g+ Q |Il M) &
440
(G2) multiC G G’ .

https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main_helper.v?plain=1#L115-L130
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L845-L852
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/substitution.v?plain=1#L157-L160
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main.v?plain=1#L10

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

B. Ekici, T. Kamegai and N. Yoshida 19:15

G G
o | 1a
precvg [..y..]: T p_send pn e Q: T’
Lem 20 (a)J/ J{Len] 20 (b)
T > 1ltt_recv q [..(x0,x1)..] T’ > 1tt_send p (+[n] (s, LT))
Lem JSJSJ/ lLenx 33
G’ G’
le T = 1tt_recv q [..(s,TL?)..] la | 10 = 1tt_send p [..(s,TL)..]
lLen] 28 lLen—n 28
L2 TL

In the above diagram, we illustrate a sequence of preprocessing steps to build a goal context.
These steps involve inversion and lemma application to derive new hypotheses. Arrows
indicate applications, straight lines show projections, and double lines share endpoints.

By inverting H and Hn, we obtain the judgments p_recvq [..y..]: T,

psend pneQ: T’, nilF eval v: s, G [, T,and G |q T’ , for some sort s, and local
type trees T, T’ , where [..n..] denotes the n®™ member of a list. Lemma 20 describes
the structure of T and T’ with respect to subtyping: 1tt_recv q [..(x0,x1..)] < T and
1tt_send p (+[n] (s, LT)) < T’ , for some option list [..(x¢,x1..)] of sort-local type tree
pairs and LT of local type tree, such that (Some x¢ :: nil) nil F y: x; . These relations
show that T is of the form 1tt_recv q, and T’ is of the form 1tt_send p. Given this
structure, Lemma 33 further establishes the existence of G’ such that G \q = p G’ .

From the step into G’ and the projections of G, Lemma 31 implies that the n*™
continuations of T and T’ are (s, TL’) and (s, TL) , for some local type trees TL and
TL’> . Given this, Lemma 28 further provides that G’ |, TL> and G’ [q TL.

We apply tsess and tc_sub to (7 after substituting G’ as the existential argu-
ment. This reduces the proof to nil nil F (subst_expr_proc y (e_val v) 0 0): x; and
nil nil + Q: TL . Lemma 34 reduces the first statement to (Some x¢ :: nil) nil F y: x;
and nil F e_val v: xo . The former was established earlier, and the latter follows by
inverting 1tt_recv q [..(s,TL?)..] > 1tt_recv q [..(x0,x1)..] and applying sc_sub }¥.
The second statement follows from Lemma 32, using G ’s projection and transition to G’ .

Finally, G2, multiC G G’ , follows from G \p = q G’ . <

» Example 36. We show an application of Theorem 35 to [16, Ex. 3.17]. The code is here %.
» Lemma 37 (canonical forms for processes and sessions). (¥, ¥)

Given typ_sess M (gtt_send p q xs) , d session M’ such that unfoldP M M’ and M’
isof p+ P Illl g+ Q Il M’ or p<« P |ll g« Q form.
Given typ_sess M gtt_end J session M’ such that unfoldP M M’ and every process in

M’ is either p_inact or p_ite e Q Q° and nil nil ~ (p_ite e Q Q’): ltt_end .

ITP 2025

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/typecheck.v?plain=1#L21-L23
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/example.v
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main_helper.v?plain=1#L359-L361
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main_helper.v?plain=1#L391-L393

19:16

468
469

470

471
472

473

474

475
476

477

478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

509

Formalising Subject Reduction and Progress for Multiparty Session Processes

[T he statement derives canonical forms of sessions up to unfolding.

Proof. By induction on M, and unfolding recursion an appropriate number of times. |

» Theorem 38 (progress). ¥ If typ_sess M G, then 3 session M’ such that betaP M M’ |

or both unfoldP M M’ and every process in M’ is p_inact .
Proof. By a case split on G and matching with Lemma 37. |

» Definition 39 (stuck). ¥ A multiparty session M is stuck if §# M’ such that betaP M M’ |
and B M7 such that both unfoldP M M’ holds and every process in M’’ is p_inact . A

session M gets stuck (stuckM M) if it reduces to a stuck session.
» Theorem 40 (non-stuck). ¥ If typ_sess M G, then stuckM M — False .

Proof. Corollary of Theorems 35 and 38. <

5 Related Work and Conclusion

Castro-Perez et al. [6] introduced Zooid, a domain-specific language embedded in Coq for
certified multiparty communication. Zooid ensures mechanised soundness and completeness
through trace equivalences between the label transition systems of local and global types,
preserving properties like deadlock freedom and protocol compliance.

Tirore et al. [60] introduced a novel computable projection function, mapping global
types into local types. This function is formally verified in Coq to be sound and complete
with respect to its coinductive tree semantics. Their work focuses exclusively on projections.

Ekici and Yoshida [13] formalised a framework for asynchronous MPST in Coq, proving
that precise subtyping, as in [17, 18], is complete. The focus is on action reorderings thus
protocol optimisations in asynchronous interactions. Neither [60] nor [13] includes a process
or typing calculus, missing proofs of subject reduction, progress, and type safety.

Hinrichsen et al. [22, 19, 20] developed Actris, a tool integrating separation logics with
asynchronous session types (with subtyping), built on the Coq Iris program logic [40, 38, 37,
36]. Jacobs et al. extended Actris into LinearActris [35], incorporating linear logic to ensure
deadlock and leak freedom. Their work is limited to binary session types.

Hinrichsen et al. [21] introduced the Multris framework, combining separation logic
for verifying functional correctness with multiparty message-passing and shared-memory
concurrency. They formally proved protocol consistency within the Coq Iris environment,
drawing inspiration from the bottom-up approach to MPST in [53], which focuses on local
types. Therefore, inherent properties of global types are not proven for Multris.

Tassarotti et al. [55] developed a compiler for a functional language with binary session
types, based on a simplified version of the GV system [14], and formally verified its correctness
in Coq. Jacobs et al. [34] extended this work into MPGV which enhances linear lambda
calculus with multiparty sessions, supporting participant redirecting and dynamic thread
spawning. Their type system includes global and local types, with local types handling
linear data. Deadlock freedom is ensured by representing cyclic communication as an acyclic
graph, eliminating the need for central coordination. The proof [34, Theorem 5.7] uses
separation logic and configuration invariants to ensure preservation and progress, showing
that configurations satisfying the invariant cannot get stuck.

Tirore [59] in his PhD thesis formalises subject reduction in Coq for the multiparty session
m-calculus in [26], incorporating session initialisation and delegation. The type system uses

https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main.v?plain=1#L233
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L77
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main.v?plain=1#L550

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

B. Ekici, T. Kamegai and N. Yoshida

channel-ezplicit global and local types, with projections derived from [60]. Channel-explicit
types further require linearity checks, ensuring global types to be projectable, therefore
making the formalisation harder to extend or integrate with other systems, as most session
type systems (including ours) use channel-implicit types. In a subsequent work, Tirore et
al. [58] extend the results of his thesis by formalising the proofs of communication safety and
safety preservation in Coq.

Brady [5] designed secure communication protocols for binary sessions in Idris, while
Thiemann et al. [57] formalised progress and preservation for binary session types in Agda.

Hirsch and Garg introduced Pirouette [23], a choreographic language with formal guaran-
tees verified in Coq. Cruz-Filipe et al. [10] formalised the theory of choreographic program-
ming in Coq. Pohjola et al. [51] presented Kalas, a compiler for a choreographic language
whose correctness has been verified within HOLA4.

Comparison. Unlike [59], our subject reduction property ensures protocol conformance
(session fidelity) [26, Corollary 5.23]. We formalise progress and non-stuckness too. In contrast
to [34], our language extends a core multiparty session calculus with key MPST features. The
type system, based on channel-implicit global and local types with coinductive projections,
guarantees: (1) deadlock freedom via a top-down approach, (2) the non-stuck theorem through
subject reduction and progress and (3) incorporates subtyping. Our formalisation is designed
to be extensible, allowing for future enhancements such as incorporating projection with full
merging, and properties like fairness and liveness (discussed below).

In Coq. Tirore [59], Castro-Perez et al. [6], and our formalisation use inductive syntax for
types and coinductive syntax for (equi-)recursive type unfoldings. In these works, projection
is defined using plain merging. While [59] and [6] model consumptions using LTS semantics,
we implement a coinductive step relation. These formalisations use paco constructs to define
coinductive relations. Jacobs et al. [34] use coinductive syntax for types and corecursion to
capture repetitive behaviour, formalised in Coq with native coinduction.

Formalising p types is challenging. One approach uses infinite unfoldings over a coinductive
tree, while another defines types directly within a coinductive framework. Coinductive
techniques aid proof mechanisation in Coq but complicate rewriting codata (Leibniz equality
is undecidable). A common solution is defining a bisimulation over coinductive structures
and assuming extensionality principles, aligning bisimilarity with Coq’s Leibniz equality.

Future Work. Our future work includes extensions to the coinductive full merging [62,
Definition 4.23] and the proof of liveness [67]. These extensions are plausible as in many
parts of the codebase, proofs will remain unaffected by changes to the merging operator.
Additionally, statements concerning projections can often be directly reused or require minor
adaptations to support the proofs needed for liveness.

> Full Merging. The proof for the coinductive full merge is largely self-contained, requiring
modifications to the proofs of Lemmas 28 and 29. Key statements as typ_after_step_1
¥ remain valid and follow by induction on the global type tree context. Adjustments are
needed, particularly for typ_after_step_3_helper ¥, where we establish subtyping instead
of strict equality. This change has minimal impact on the rest of the codebase.

> Liveness. We will introduce typing contexts—distinct from those in grafting—as
participant-local type tree pairs, linked to global type trees via projection. Their reductions,
based on transition labels, yield (potentially) infinite traces. Using LTL constructs, we say a
trace is live if every enabled reduction is eventually executed, and this always holds. We aim
to prove in Coq that if a global type tree has an associated typing context, then the context
is live. Existing proofs using projection can be adapted for reuse at the typing context level.

19:17

ITP 2025

https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v#L1131
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v#L1313

19:18

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

607

Formalising Subject Reduction and Progress for Multiparty Session Processes

—— References

1

10

11

Alexander Bagnall, Gordon Stewart, and Anindya Banerjee. Inductive reasoning for coinductive
types. CoRR, abs/2301.09802, 2023. URL: https://doi.org/10.48550/arXiv.2301.09802,
arXiv:2301.09802, doi:10.48550/ARXIV.2301.09802.

Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Designing asynchronous
multiparty protocols with crash-stop failures. In Karim Ali and Guido Salvaneschi, editors,
87th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,
Seattle, Washington, United States, volume 263 of LIPIcs, pages 1:1-1:30. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ECO0P.2023.
1, d0i:10.4230/LIPICS.ECO0P.2023.1.

Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Crash-stop failures in
asynchronous multiparty session types. Logical Methods in Computer Science, 2025. URL:
https://arxiv.org/abs/2311.11851.

Jelle Bouma, Stijn de Gouw, and Sung-Shik Jongmans. Multiparty Session Typing in Java, De-
ductively. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 29th International Conference, TACAS 2023,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Paris, France, April 22-27, 2023, Proceedings, Part II, volume 13994 of Lecture Notes
in Computer Science, pages 19-27. Springer, 2023. doi:10.1007/978-3-031-30820-8_3.
Edwin C. Brady. Type-driven development of concurrent communicating systems. Comput.
Sci., 18(3), 2017. URL: https://doi.org/10.7494/csci.2017.18.3.1413, doi:10.7494/
CSCI.2017.18.3.1413.

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. Zooid: a DSL
for certified multiparty computation: from mechanised metatheory to certified multiparty
processes. In Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 2021, pages 237-251. ACM, 2021. doi:10.1145/3453483.3454041.
David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed programming using role-parametric session types in Go: statically-typed endpoint
apis for dynamically-instantiated communication structures. Proc. ACM Program. Lang.,
3(POPL):29:1-29:30, 2019. doi:10.1145/3290342.

David Castro-Perez and Nobuko Yoshida. Dynamically Updatable Multiparty Session Protocols:
Generating Concurrent Go Code from Unbounded Protocols. In Karim Ali and Guido
Salvaneschi, editors, 37th European Conference on Object-Oriented Programming, ECOOP
2023, July 17-21, 2023, Seattle, Washington, United States, volume 263 of LIPIcs, pages
6:1-6:30. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2023. URL: https://doi.org/
10.4230/LIPIcs.ECO0P.2023.6, doi:10.4230/LIPICS.ECO0P.2023.6.

Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proenca. API generation
for multiparty session types, revisited and revised using scala 3. In Karim Ali and Jan Vitek,
editors, 36th European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10,
2022, Berlin, Germany, volume 222 of LIPIcs, pages 27:1-27:28. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ECO0P.2022.27,
doi:10.4230/LIPICS.EC0O0P.2022.27.

Luis Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. A formal theory of choreo-
graphic programming. J. Autom. Reason., 67(2):21, 2023. URL: https://doi.org/10.1007/
$10817-023-09665-3, doi:10.1007/S10817-023-09665-3.

Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message
reordering in Rust with multiparty session types. In Jaejin Lee, Kunal Agrawal, and Michael F.
Spear, editors, PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Seoul, Republic of Korea, April 2 - 6, 2022, pages 246-261. ACM, 2022.
doi:10.1145/3503221.3508404.

https://doi.org/10.48550/arXiv.2301.09802
https://arxiv.org/abs/2301.09802
https://doi.org/10.48550/ARXIV.2301.09802
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://doi.org/10.4230/LIPICS.ECOOP.2023.1
https://arxiv.org/abs/2311.11851
https://doi.org/10.1007/978-3-031-30820-8_3
https://doi.org/10.7494/csci.2017.18.3.1413
https://doi.org/10.7494/CSCI.2017.18.3.1413
https://doi.org/10.7494/CSCI.2017.18.3.1413
https://doi.org/10.7494/CSCI.2017.18.3.1413
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3290342
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://doi.org/10.4230/LIPICS.ECOOP.2023.6
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPICS.ECOOP.2022.27
https://doi.org/10.1007/s10817-023-09665-3
https://doi.org/10.1007/s10817-023-09665-3
https://doi.org/10.1007/s10817-023-09665-3
https://doi.org/10.1007/S10817-023-09665-3
https://doi.org/10.1145/3503221.3508404

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

B. Ekici, T. Kamegai and N. Yoshida

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and Python. Formal Methods Syst. Des., 46(3):197-225, 2015. URL: https://doi.org/
10.1007/s10703-014-0218-8, doi:10.1007/S10703-014-0218-8.

Burak Ekici and Nobuko Yoshida. Completeness of asynchronous session tree subtyping in Coq.
In Yves Bertot, Temur Kutsia, and Michael Norrish, editors, 15th International Conference on
Interactive Theorem Proving, ITP 2024, September 9-14, 2024, Tbilisi, Georgia, volume 309
of LIPIcs, pages 13:1-13:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024. URL:
https://doi.org/10.4230/LIPIcs.ITP.2024.13, doi:10.4230/LIPICS.ITP.2024.13.

Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous session
types. J. Funct. Program., 20(1):19-50, 2010. doi:10.1017/50956796809990268.

Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-by-
contract for flexible multiparty session protocols. In Karim Ali and Jan Vitek, editors,
86th European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022,
Berlin, Germany, volume 222 of LIPIcs, pages 8:1-8:28. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ECO0P.2022.8, doi:10.4230/
LIPICS.ECOOP.2022.8.

Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. JLAMP, 104:127-173, 2019.

Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida. Precise
Subtyping for Asynchronous Multiparty Sessions. Proc. ACM Program. Lang., 5:16:1-16:28,
jan 2021.

Silvia Ghilezan, Jovanka Pantovié, Ivan Prokié, Alceste Scalas, and Nobuko Yoshida. Precise
subtyping for asynchronous multiparty sessions. ACM Trans. Comput. Logic, 24(2), Nov 2023.
doi:10.1145/3568422.

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: session-type
based reasoning in Separation Logic. Proc. ACM Program. Lang., 4(POPL):6:1-6:30, 2020.
doi:10.1145/3371074.

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris 2.0: Asynchronous
session-type based reasoning in Separation Logic. Log. Methods Comput. Sci., 18(2), 2022.
URL: https://doi.org/10.46298/1mcs-18(2:16)2022, doi:10.46298/LMCS-18(2:16)2022.
Jonas Kastberg Hinrichsen, Jules Jacobs, and Robbert Krebbers. Multris: Functional veri-
fication of multiparty message passing in Separation Logic. Proc. ACM Program. Lang.,
8(OOPSLA2):1446-1474, 2024. doi:10.1145/3689762.

Jonas Kastberg Hinrichsen, Daniél Louwrink, Robbert Krebbers, and Jesper Bengtson.
Machine-checked semantic session typing. In Catalin Hritcu and Andrei Popescu, ed-
itors, CPP ’21: 10th ACM SIGPLAN International Conference on Certified Programs
and Proofs, Virtual Event, Denmark, January 17-19, 2021, pages 178-198. ACM, 2021.
doi:10.1145/3437992.3439914.

Andrew K. Hirsch and Deepak Garg. Pirouette: higher-order typed functional choreographies.
Proc. ACM Program. Lang., 6(POPL):1-27, 2022. doi:10.1145/3498684.

Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR °93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509-523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In ESOP 1998, pages
122-138, 1998. URL: http://dx.doi.org/10.1007/BFb0053567, doi:10.1007/BFb0053567.
Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1-9:67, 2016. URL: http://doi.acm.org/10.1145/2827695, doi:10.1145/
2827695.

19:19

ITP 2025

https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/S10703-014-0218-8
https://doi.org/10.4230/LIPIcs.ITP.2024.13
https://doi.org/10.4230/LIPICS.ITP.2024.13
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://doi.org/10.4230/LIPICS.ECOOP.2022.8
https://doi.org/10.4230/LIPICS.ECOOP.2022.8
https://doi.org/10.4230/LIPICS.ECOOP.2022.8
https://doi.org/10.1145/3568422
https://doi.org/10.1145/3371074
https://doi.org/10.46298/lmcs-18(2:16)2022
https://doi.org/10.46298/LMCS-18(2:16)2022
https://doi.org/10.1145/3689762
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1145/3498684
https://doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
http://doi.acm.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695

19:20

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

710

Formalising Subject Reduction and Progress for Multiparty Session Processes

27

28

29

30

31

32

33

34

35

36

37

38

Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda.
Type-Safe Eventful Sessions in Java. In Theo D’Hondt, editor, ECOOP 2010 - Object-
Oriented Programming, 24th FEuropean Conference, Maribor, Slovenia, June 21-25, 2010.
Proceedings, volume 6183 of Lecture Notes in Computer Science, pages 329-353. Springer,
2010. doi:10.1007/978-3-642-14107-2_16.

Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API genera-
tion. In Perdita Stevens and Andrzej Wasowski, editors, Fundamental Approaches to Software
Engineering - 19th International Conference, FASE 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings, volume 9633 of Lecture Notes in Computer Science, pages 401-418.
Springer, 2016. doi:10.1007/978-3-662-49665-7_24.

Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types. In
Marieke Huisman and Julia Rubin, editors, Fundamental Approaches to Software Engineering
- 20th International Conference, FASE 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10202 of Lecture Notes in Computer Science, pages 116—133. Springer,
2017. doi:10.1007/978-3-662-54494-5_7.

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of parameterization
in coinductive proof. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,
Ttaly - January 23 - 25, 2013, pages 193-206. ACM, 2013. doi:10.1145/2429069.2429093.
Keigo Imai, Julien Lange, and Rumyana Neykova. Kmclib: Automated inference and veri-
fication of session types from ocaml programs. In Dana Fisman and Grigore Rosu, edit-
ors, Tools and Algorithms for the Construction and Analysis of Systems - 28th Interna-
tional Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I, volume 13243 of Lecture Notes in Computer Science, pages 379-386. Springer, 2022.
doi:10.1007/978-3-030-99524-9_20.

Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty session pro-
gramming with global protocol combinators. In Robert Hirschfeld and Tobias Pape, editors,
84th European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17,
2020, Berlin, Germany (Virtual Conference), volume 166 of LIPIcs, pages 9:1-9:30. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.
ECO0P.2020.9, doi:10.4230/LIPICS.EC0O0P.2020.9.

Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek. Validating iot devices
with rate-based session types. Proc. ACM Program. Lang., 7(OOPSLA2):1589-1617, 2023.
doi:10.1145/3622854.

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Multiparty GV: functional multiparty
session types with certified deadlock freedom. Proc. ACM Program. Lang., 6(ICFP):466-495,
2022. doi:10.1145/3547638.

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. Deadlock-free Separation
Logic: Linearity yields progress for dependent higher-order message passing. Proc. ACM
Program. Lang., 8(POPL):1385-1417, 2024. doi:10.1145/3632889.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state. In
Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 256-269. ACM, 2016. doi:10.1145/2951913.2951943.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent Separation
Logic. J. Funct. Program., 28:€20, 2018. doi:10.1017/50956796818000151.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent

https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1007/978-3-030-99524-9_20
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPICS.ECOOP.2020.9
https://doi.org/10.1145/3622854
https://doi.org/10.1145/3547638
https://doi.org/10.1145/3632889
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

B. Ekici, T. Kamegai and N. Yoshida

39

40

41

42

43

44

45

46

47

48

49

reasoning. In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 637-650. ACM, 2015. doi:10.1145/2676726.
2676980.

Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with Mungo and StMungo: A session type toolchain for Java. Sci. Comput. Program., 155:52—
75, 2018. URL: https://doi.org/10.1016/j.scico0.2017.10.006, doi:10.1016/J.SCICO.
2017.10.006.

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. The essence of higher-order concurrent Separation Logic. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of Lecture Notes
in Computer Science, pages 696—723. Springer, 2017. doi:10.1007/978-3-662-54434-1_26.
Nicolas Lagaillardie, Ping Hou, and Nobuko Yoshida. Fearless Asynchronous Communications
with Timed Session Types in Rust (Artifact). Dagstuhl Artifacts Ser., 10(2):10:1-10:3, 2024.
doi:10.4230/DARTS.10.2.10.

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic:
Affine Rust Programming with Multiparty Session Types. In Karim Ali and Jan Vitek,
editors, 36th European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10,
2022, Berlin, Germany, volume 222 of LIPIcs, pages 4:1-4:29. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ECO0P.2022.4, doi:
10.4230/LIPICS.EC00P.2022.4.

Hugo A. Lépez, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos,
Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Protocol-based verification of message-
passing parallel programs. In Jonathan Aldrich and Patrick Eugster, editors, Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA,
October 25-30, 2015, pages 280—298. ACM, 2015. doi:10.1145/2814270.2814302.

Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-safe web
programming in TypeScript with routed multiparty session types. In Aaron Smith, Delphine
Demange, and Rajiv Gupta, editors, CC ’21: 30th ACM SIGPLAN International Conference
on Compiler Construction, Virtual Event, Republic of Korea, March 2-3, 2021, pages 94—106.
ACM, 2021. doi:10.1145/3446804.3446854.

Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Aspects Comput., 29(5):877-910, 2017. URL: https://doi.
org/10.1007/s00165-017-0420-8, doi:10.1007/500165-017-0420-8.

Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in f#. In
Christophe Dubach and Jingling Xue, editors, Proceedings of the 27th International Conference
on Compiler Construction, CC 2018, February 24-25, 2018, Vienna, Austria, pages 128—-138.
ACM, 2018. doi:10.1145/3178372.3179495.

Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced recovery.
In Peng Wu and Sebastian Hack, editors, Proceedings of the 26th International Conference
on Compiler Construction, Austin, TX, USA, February 5-6, 2017, pages 98-108. ACM, 2017.
URL: http://dl.acm.org/citation.cfm?id=3033031.

Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. Log. Methods Comput.
Sci., 13(1), 2017. doi:10.23638/LMCS-13(1:17)2017.

Nicholas Ng, José Gabriel de Figueiredo Coutinho, and Nobuko Yoshida. Protocols by
default - safe MPI code generation based on session types. In Bjorn Franke, editor, Compiler
Construction - 24th International Conference, CC 2015, Held as Part of the Furopean Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,

19:21

ITP 2025

https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/J.SCICO.2017.10.006
https://doi.org/10.1016/J.SCICO.2017.10.006
https://doi.org/10.1016/J.SCICO.2017.10.006
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.4230/DARTS.10.2.10
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.4230/LIPICS.ECOOP.2022.4
https://doi.org/10.4230/LIPICS.ECOOP.2022.4
https://doi.org/10.4230/LIPICS.ECOOP.2022.4
https://doi.org/10.1145/2814270.2814302
https://doi.org/10.1145/3446804.3446854
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/S00165-017-0420-8
https://doi.org/10.1145/3178372.3179495
http://dl.acm.org/citation.cfm?id=3033031
https://doi.org/10.23638/LMCS-13(1:17)2017

19:22

763

764

765
766
767

768

769
770
771
772
773

774

775
776
777
778
779

780

781

782

783
784

785

786
787
788
789
790

791

792

793

794
795
796

797

798
799
800
801
802
803

804

805

806

807
808
809
810
811

812

Formalising Subject Reduction and Progress for Multiparty Session Processes

50

51

52

53

54

55

56

57

58

59

60

2015. Proceedings, volume 9031 of Lecture Notes in Computer Science, pages 212—232. Springer,
2015. doi:10.1007/978-3-662-46663-6_11.

Kirstin Peters and Nobuko Yoshida. Separation and encodability in mixed choice multiparty
sessions. In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of
the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn,
Estonia, July 8-11, 2024, pages 62:1-62:15. ACM, 2024. doi:10.1145/3661814.3662085.

Johannes Aman Pohjola, Alejandro Gémez-Londono, James Shaker, and Michael Norrish.
Kalas: A verified, end-to-end compiler for a choreographic language. In June Andronick and
Leonardo de Moura, editors, 13th International Conference on Interactive Theorem Proving,
ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 27:1-27:18. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.
ITP.2022.27, doi:10.4230/LIPICS.ITP.2022.27.

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decompos-
ition of multiparty sessions for safe distributed programming. In Peter Miiller, editor,
31st European Conference on Object-Oriented Programming, ECOOP 2017, June 19-23,
2017, Barcelona, Spain, volume 74 of LIPIcs, pages 24:1-24:31. Schloss Dagstuhl - Leibniz-
Zentrum flr Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ECO0P.2017.24,
doi:10.4230/LIPICS.EC0O0P.2017.24.

Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.
ACM Program. Lang., 3(POPL):30:1-30:29, 2019. doi:10.1145/3290343.

Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its
typing system. In PARLE 1994, pages 398-413, 1994. URL: http://dx.doi.org/10.1007/
3-540-58184-7_118, doi:10.1007/3-540-58184-7_118.

Joseph Tassarotti, Ralf Jung, and Robert Harper. A higher-order logic for concurrent
termination-preserving refinement. In Hongseok Yang, editor, Programming Languages and
Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer Science,
pages 909-936. Springer, 2017. doi:10.1007/978-3-662-54434-1_34.

The Coq Development Team. The Coq reference manual — release 8.18.0. https://coq.inria.
fr/doc/V8.18.0/refman, 2023.

Peter Thiemann. Intrinsically-typed mechanized semantics for session types. In Ekaterina
Komendantskaya, editor, Proceedings of the 21st International Symposium on Principles and
Practice of Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019, pages
19:1-19:15. ACM, 2019. doi:10.1145/3354166.3354184.

Dawit Tirore, Jesper Bengtson, and Marco Carbone. Multiparty asynchronous session types:
A mechanised proof of subject reduction. In Jonathan Aldrich and Alexandra Silva, editors,
39th European Conference on Object-Oriented Programming (ECOOP 2025), volume 33 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1-33:30. Schloss Dagstuhl—
Leibniz-Zentrum fir Informatik, 2025. All proofs mechanised in Coq; supplementary material
at https://github.com/Tirore96/subject_reduction/tree/ECO0P2025/theories. doi:10.
4230/LIPIcs.ECOOP.2025.33.

Dawit Legesse Tirore. A Mechanisation of Multiparty Session Types. PhD thesis, ITU
Copenhagen, December 2024.

Dawit Legesse Tirore, Jesper Bengtson, and Marco Carbone. A sound and complete pro-
jection for global types. In Adam Naumowicz and René Thiemann, editors, 14th Interna-
tional Conference on Interactive Theorem Proving, ITP 2023, July 31 to August 4, 2023,
Bialystok, Poland, volume 268 of LIPIcs, pages 28:1-28:19. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ITP.2023.28, doi:
10.4230/LIPICS.ITP.2023.28.

https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1145/3661814.3662085
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPICS.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPICS.ECOOP.2017.24
https://doi.org/10.1145/3290343
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-662-54434-1_34
https://coq.inria.fr/doc/V8.18.0/refman
https://coq.inria.fr/doc/V8.18.0/refman
https://coq.inria.fr/doc/V8.18.0/refman
https://doi.org/10.1145/3354166.3354184
https://github.com/Tirore96/subject_reduction/tree/ECOOP2025/theories
https://doi.org/10.4230/LIPIcs.ECOOP.2025.33
https://doi.org/10.4230/LIPIcs.ECOOP.2025.33
https://doi.org/10.4230/LIPIcs.ECOOP.2025.33
https://doi.org/10.4230/LIPIcs.ITP.2023.28
https://doi.org/10.4230/LIPICS.ITP.2023.28
https://doi.org/10.4230/LIPICS.ITP.2023.28
https://doi.org/10.4230/LIPICS.ITP.2023.28

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

B. Ekici, T. Kamegai and N. Yoshida

61

62

63

64

65

66

67

68

69

Thien Udomsrirungruang and Nobuko Yoshida. Top-down or bottom-up? complexity analyses
of synchronous multiparty session types. Proc. ACM Program. Lang., 9(POPL):1040-1071,
2025. doi:10.1145/3704872.

Thien Udomsrirungruang and Nobuko Yoshida. Top-Down or Bottom-Up? Complexity
Analyses of Synchronous Multiparty Session Types. ACM SIGPLAN Symposium on Principles
of Programming Languages, 2025. doi:10.1145/3704872.

Martin Vassor and Nobuko Yoshida. Refinements for multiparty message-passing protocols:
Specification-agnostic theory and implementation. In Jonathan Aldrich and Guido Salvaneschi,
editors, 38th European Conference on Object-Oriented Programming, ECOOP 2024, September
16-20, 2024, Vienna, Austria, volume 313 of LIPIcs, pages 41:1-41:29. Schloss Dagstuhl -

Leibniz-Zentrum fiir Informatik, 2024. URL: https://doi.org/10.4230/LIPIcs.ECO0P.2024.

41, doi:10.4230/LIPICS.ECO0P.2024.41.

Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. Proc. ACM Program. Lang.,
5(O0OPSLA):1-30, 2021. doi:10.1145/3485501.

Nobuko Yoshida. Programming language implementations with multiparty session types. In
Frank S. de Boer, Ferruccio Damiani, Reiner Hahnle, Einar Broch Johnsen, and Eduard Kam-
burjan, editors, Active Object Languages: Current Research Trends, volume 14360 of Lecture
Notes in Computer Science, pages 147-165. Springer, 2024. doi:10.1007/978-3-031-51060-1\
_6.

Nobuko Yoshida and Lorenzo Gheri. A very gentle introduction to multiparty session types.
In Dang Van Hung and Meenakshi D’Souza, editors, Distributed Computing and Internet
Technology - 16th International Conference, ICDCIT 2020, Bhubaneswar, India, January 9-12,
2020, Proceedings, volume 11969 of Lecture Notes in Computer Science, pages 73-93. Springer,
2020. doi:10.1007/978-3-030-36987-3_5.

Nobuko Yoshida and Ping Hou. Less is More Revisited. CoRR, abs/2402.16741, 2024.
URL: https://doi.org/10.48550/arXiv.2402.16741, arXiv:2402.16741, doi:10.48550/
ARXIV.2402.16741.

Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. An equational theory
for weak bisimulation via generalized parameterized coinduction. In Jasmin Blanchette and
Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020,
pages 71-84. ACM, 2020. doi:10.1145/3372885.3373813.

Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically verified refinements for multiparty protocols. Proc. ACM Program. Lang.,
4(OOPSLA):148:1-148:30, 2020. doi:10.1145/3428216.

19:23

ITP 2025

https://doi.org/10.1145/3704872
https://doi.org/10.1145/3704872
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://doi.org/10.4230/LIPICS.ECOOP.2024.41
https://doi.org/10.1145/3485501
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.48550/arXiv.2402.16741
https://arxiv.org/abs/2402.16741
https://doi.org/10.48550/ARXIV.2402.16741
https://doi.org/10.48550/ARXIV.2402.16741
https://doi.org/10.48550/ARXIV.2402.16741
https://doi.org/10.1145/3372885.3373813
https://doi.org/10.1145/3428216

	1 Introduction
	2 Synchronous Multiparty Session Calculus
	2.1 Structural Pre-Congruence and Reduction Rules

	3 Type System
	3.1 Types and Trees
	3.2 Projection and Consumption
	3.3 Subtyping
	3.4 Typing Rules
	3.5 Grafting, Balancedness and Well formedness

	4 Proof of Non-stuck Theorem in Coq
	5 Related Work and Conclusion

