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Abstract9

Multiparty session types (MPST) provide a robust typing discipline for specifying and verifying10

communication protocols in concurrent and distributed systems involving multiple participants. This11

work formalises the non-stuck theorem for synchronous MPST in the Coq proof assistant, ensuring12

that well-typed communications never get stuck. We present a fully mechanised proof of the theorem,13

where recursive type unfoldings are modelled as infinite trees, leveraging coinductive reasoning. This14

marks the first formal proof to incorporate precise subtyping, aiming to extend the typability of15

processes thus precision of the type system. The proof is grounded in fundamental properties such16

as subject reduction and progress.17

During the mechanisation process, we discovered that the structural congruence rule for recursive18

processes, as presented in several prior works on MPST, violates subject reduction. We resolve this19

issue by revising and formalising the rule to ensure the preservation of type soundness.20

Our approach to formal proofs about infinite type trees involves analysing their finite prefixes21

through inductive reasoning within outer-level coinductively stated goals. We employ the greatest22

fixed point of the parameterised least fixed point technique to define coinductive predicates and23

use parameterised coinduction to prove properties. The formalisation comprises approximately 16K24

lines of Coq code, accessible at: https://github.com/Apiros3/smpst-sr-smer.25
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1 Introduction36

Distributed and concurrent systems rely on message-passing for communication, guided37

by predefined protocols. Ensuring protocol conformance is crucial to prevent failures like38

deadlocks and mismatched communications. Session types, rooted in process calculi [25, 54],39

provide a type-theoretic framework for specifying communication structures. Initially designed40

for two-party interactions [24], they were extended to multiparty session types (MPST) to41

support multi-participant protocols [17, 66]. MPST have been implemented in various42

languages, including Java [39, 4, 28, 29], Scala [52, 2, 64, 9], OCaml [31, 32], F⋆ [69],43
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19:2 Formalising Subject Reduction and Progress for Multiparty Session Processes

F♯ [46], Python [48, 12], Erlang [47, 45], MPI-C [49, 43], Go [8, 7], TypeScript [15, 44],44

and Rust [11, 41, 42, 63, 33]. Session types have also been formalised in proof assistants,45

particularly Coq [22, 19, 20, 35, 21, 34, 6, 60, 13], Idris [5, 27], and Agda [57]. For a46

comprehensive discussion, see [65].47

MPST describes communication protocols as global types, outlining interactions among48

participants, which are then projected into local types for individual processes. A session49

represents an instance of a protocol, structuring message-passing. MPST supports various50

synchronisation models. In synchronous MPST [16], communication requires real-time51

coordination between senders and receivers, ensuring protocol compliance and message order.52

This work extends MPST and synchronous communication [16] with a mechanised proof53

of the non-stuck theorem using coinductive reasoning over type trees. These trees, derived54

from global and local types, represent recursive structures via infinite unfoldings. The proof55

exploits type tree properties to refine projection accuracy under subtyping. A key novelty is56

integrating subtyping into type checking, unlike prior mechanisation efforts [34, 6, 60] that57

prove progress for MPST. In Coq, infinite trees are defined using positive coinductive types,58

differing from function-based definitions in [16, Definition A.4]. To ensure that structural59

equivalence (isomorphism) of infinite trees is aligned with Coq’s Leibniz equality, we introduce60

a coinductive extensionality axiom (Axiom 22); see Remark 23 for a justification of soundness.61

Our type system guarantees:62

1. subject reduction: if a typed session M reduces to M′, then its typing tree G transitions63

via consumption steps (Definition 14) to a new tree G′ that types M′;64

2. progress: every session M either terminates or reduces to another session M′.65

The non-stuck theorem, which states that “well-typed sessions are free of communication66

errors (e.g., label mismatch, polarity mismatch, etc.) and always either normally terminate67

or evolve into well-typed sessions,” follows as a corollary of these properties.68

Defining structural congruence as a symmetric relation, as in some prior work [2, 16, 50,69

17, 18], invalidates subject reduction. To address this, we redefine congruence for processes70

and sessions (Table 1), disabling symmetry by removing foldback identities. This issue was71

identified and addressed during the formal proof process. The fix, detailed in § 3.3 (see72

Rem.17 and Ex.18), highlights the importance of formalisation.73

Terms are categorised into processes and sessions, with types divided into channel implicit74

global (G) and local types (T). Traditionally, global types validate sessions, while local75

types validate processes. Global types define multi-party protocols, while local types specify76

individual roles. Both use the recursion binder µ to model repetition. The projection relation77

maps global types to local ones for each participant. This is the top-down method. Figure 178

illustrates both the subject reduction proof structure and our design choices. We interpret79

global and local types onto coinductive type trees, avoiding the µ binder by leveraging80

circularity of coinduction. Our equi-recursive approach treats recursive types as equivalent81

to their unfoldings, mapping both to the same type tree. In our setting, global type trees82

(G) type multiparty sessions (M), while local type trees (T) type processes (P). We ensure83

that a global type always exists that unfolds into the tree used for typing a given session.84

The process typing ⊢p is enhanced by the subsumption rule, allowing a supertype T′ to type85

any process of type T. When a well-typed session ⊢M M : G evolves into M′, a global type86

tree G′ is obtained by consuming actions of G, ensuring ⊢M M′ : G′(subject reduction). All87

concepts in Figure 1, along with the non-stuckness property, are implemented in Coq [56].88

The formalisation is available at: https://github.com/Apiros3/smpst-sr-smer.89

Key Insight for Mechanisation. Proving statements that involve multiple coinduct-90

https://github.com/Apiros3/smpst-sr-smer
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Figure 1 Design overview

ive declarations over infinite trees is challenging in Coq. We address this by (vertically)91

decomposing a tree into a finite prefix that excludes certain structures (e.g., participants92

in balanced trees—Lemma 26), then applying induction to reason about the finite portion93

within an outer coinductive goal.94

Additionally, we use list structures to encode the finite width of a given tree, rather than95

function types or infinite structures such as colists. This choice simplifies proofs about trees,96

as it enables inductive reasoning on the width. However, it renders corecursive functions (e.g.,97

translations from types to trees) ill-formed, since the inner finite structure prevents them98

from being productive. To address this, we axiomatise such functions as coinductive data99

types in Coq’s Prop . While not required for the current development, we could leverage100

the axiom constructive indefinite description to inject computational content in and prove101

existential properties over trees. We believe these design choices are reasonable, as they102

scaled effectively and ultimately led to our non-stuck proof for MPST in Coq. We also103

employ the Paco library [30, 68], which facilitates coinductive proofs by bypassing Coq’s104

syntactic guardedness checks.105

Our mechanisation of a core top-down MPST system highlights key challenges, and106

designed for extensibility, it supports future adaptations, including merging [16, Definition107

3.6] in projection and properties like liveness [67, Definition 12]. See § 5 for details. In108

the accompanying library, we employ classical reasoning to conduct case analysis primarily109

over coinductively defined predicates. The library comprises around 16K lines of Coq code,110

containing 341 proven lemmata and 117 definitions.111

2 Synchronous Multiparty Session Calculus112

In this section, we introduce the process calculus for sessions, employing a semi equi-113

recursive approach. This approach ensures that a recursive process and its unfolded form are114

represented identically, while preventing folded versions of an already unfolded process from115

being considered equivalent. This distinction plays a key role in establishing the proof of116

subject reduction theorem. Further details on this approach are covered in § 2.1.117

▶ Note 1. Throughout the paper, we hyperlink Coq source code to the symbol , while118

highlighted text denotes excerpts from the Coq source.119

We introduce some preliminaries. Processes interact by exchanging expressions ( expr120

in Coq), denoted by e. An expression can be a value ( e_val ), such as an integer, natural121

number, or boolean constant, or it may be recursively formed using operators like succ122

( e_succ ), not ( e_not ), ¬ ( e_neg ), > ( e_gt ), and + ( e_plus ). The language of processes123

ITP 2025



19:4 Formalising Subject Reduction and Progress for Multiparty Session Processes

is inductively defined by the following constructors .124

P ::= p!ℓ(e).P |
∑

i∈I p?ℓi(xi).Pi |
if e then P else P |
µX.P | X | 0

Inductive process : Type ≜
| p_send : part → label → expr → process → process
| p_recv : part → list(option process) → process
| p_ite : expr → process → process → process
| p_rec : process → process
| p_var : nat → process
| p_inact : process.

125

The first constructor defines a process that sends an expression e, tagged with label ℓ, to126

participant p, and then proceeds as P. The second one defines a process that receives a list127

of messages from participant p, each tagged with labels ℓi. These messages are then bound128

to expression variables xi within the corresponding continuations Pi. The constructor “if129

e then P else P′” is the conditional process representing the choice between processes P130

and P′. We represent inactive processes with 0 and process variables with X. We employ131

de Bruijn indices to represent process variables in Coq. Processes can be recursive, thanks132

to the µ-binder. We assume guarded recursion, meaning (1) recursion always unfolds to a133

receive or send, and (2) all process terms are closed—e.g., µX.X is invalid as it violates (1).134

▶ Definition 2 (option lists). An option list of some type A is a list in which each element135

is either of type A or the “none” value, denoted by ⊥.136

▶ Remark 3. In the accompanying Coq declaration process , the p_recv constructor uses137

an option list of processes. Non-existing labels are represented as None . Each label maps to138

an index in the option list. For example, if the third element in the list is Some P , it indicates139

that the label indexed by three has a valid continuation P ; if it is None , no continuation is140

associated with that label. Using option lists eliminates the need to search for labels. We141

apply this approach throughout the paper when necessary. This method is sound in our142

setting, as no label is ever used to identify more than one continuation.143

A multiparty session is parallel composition “|” of participant-process pairs, denoted p ◁ P.144

M ::= p ◁ P | M | M Inductive session: Type ≜
| s_ind : part → process → session
| s_par : session → session → session.

145

We employ the notation M ||| M’ to denote the parallel composition s_par M M’ of146

sessions, and p ← P for the individual case s_ind p P .147

2.1 Structural Pre-Congruence and Reduction Rules148

The operational semantics for expressions is immaterial and therefore omitted. Instead, we149

present the reduction rules for sessions in Table 1 (below the dashed line). These rules rely150

on a non-symmetric yet transitive preorder relation, ⇛ (above the dashed line). A discussion151

of an issue found in previously published literature [2, 50, 17, 18], which violates subject152

reduction due to the use of symmetric and transitive congruence, is postponed to Remark 17153

and Example 18, as it becomes more apparent under the typing rules listed in Table 2.154

The rule [po-unf] permits treating a recursive process, within a session, and its unfoldings as155

congruent, but not vice versa. The rule [po-perm] extends this idea, allowing the reordering of156

participant-process pairs in parallel compositions.157

▶ Notation 4. The notation
∏

i∈I pi◁Pi represents a session composed of parallel compositions158

pi ◁ Pi for all i ∈ I.159

The [r-comm] rule in Table 1 governs the synchronous interaction between participants p and160

q such that q sends an expression payload e towards p with the label ℓj and continues as161

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/process.v?plain=1#L11-L17
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L9-L11
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p ◁ µX.P | M ⇛ p ◁ P[µX.P/X] | M
[po-unf]

J is a permutation of I∏
i∈I

pi ◁ Pi ⇛
∏

j∈J
pj ◁ Pj

[po-perm]

∀i ∈ I j ∈ I e ↓ v

p ◁
∑

i∈I
q?ℓi(xi).Pi | q ◁ p!ℓj(e).Q | M −→ p ◁ Pj [v/xj ] | q ◁ Q | M

[r-comm]

e ↓ true
p ◁ if e then P else Q | M −→ p ◁ P | M

[rt-ite]
M′

1 ⇛M1 M1 −→M2 M2 ⇛M′
2

M′
1 −→M′

2
[r-struct]

Table 1 Session Structure Pre-Congruence (top) and Reduction Rules (bottom): we omit [rf-ite]

the process Q. In the meantime, p awaits to receive the payload, performs the label match162

immediately after the reception, substitutes the value v (obtained by reducing the expression163

e, e ↓ v) within the process Pj with the expression variable xj , and resumes as is. If some164

participant p behaves as a conditional process if e then P else Q, it resumes as P in case165

the expression evaluates to true, governed by the [rt-ite] rule, or as Q otherwise, [rf-ite] rule.166

The rule [r-struct] ensures that session reduction respects the pre-congruence ⇛ of sessions.167

We formalise these rules employing a Prop valued relation over sessions, betaP :168

Inductive betaP : relation session ≜
| ...
| r_comm : ∀ (p q : string) (xs : list (option process)) (y : process) (l : nat) (e : expr) (v : value) (Q : process) (M : session),

onth l xs = Some y → stepE e (e_val v) →
betaP (((p ← p_recv q xs) ||| (q ← p_send p l e Q)) ||| M) (((p ← subst_expr_proc y (e_val v) 0 0) ||| (q ← Q)) ||| M)

| r_struct: ∀ (M1 M1’ M2 M2’: session), unfoldP M1 M1’ → unfoldP M2’ M2 → betaP M1’ M2’ → betaP M1 M2.

169

As part of the r_comm constructor, the function onth computes the l th member y of the170

continuation option list of processes xs . The expression e is evaluated to the value e_val v171

by the stepE predicate , and the corresponding expression variable is substituted into172

y using the subst_expr_proc function . The unfoldP predicate within the r_struct173

constructor represents the pre-congruence relation ⇛.174

3 Type System175

This section covers fundamental concepts such as types, type trees, and key operations like176

projection, consumption, subtyping, and typing, which underpin the non-stuck theorem. In177

§ 3.5, we introduce type tree contexts and the grafting operation, allowing traversal of finite178

prefixes in infinite trees—essential for reasoning about balanced infinite trees.179

3.1 Types and Trees180

Global types provide a high-level overview of the communication protocol, offering a compre-181

hensive perspective on the interactions and roles of all participants involved.182

▶ Definition 5 (global types). Global types are inductively generated by:183

S ::= nat | int | bool
G ::= end | t | µt.G |

p → q : {ℓi(Si).Gi}i∈I

Inductive global : Type ≜
| g_end : global
| g_var : nat → global
| g_send: part → part → list(option(sort*global)) → global
| g_rec : global → global.

184

The constructor p → q : {ℓi(Si).Gi}i∈I denotes a communication from participant p to185

participant q with a set of messages, each identified by a label ℓi, payload sorts Si, and186

ITP 2025
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continuations Gi. The end signals the end of the protocol. Recursive types are enabled by187

the µ binder, and t represents type variables. We assume guarded recursion. That is, after a188

finite number of unfoldings, a µ-type either allows an arbitrary sequence of communication189

choices or reaches termination—µt.t is not a valid type. Similar to the case of processes, we190

use de Bruijn indices to represent global type variables (also for local types; see Definition 10).191

We develop sorts as a variant in Coq with constructors snat , sint and sbool .192

A tree structure can be derived from a global type, where recursive types are represented193

by their infinite unfoldings. Using the equi-recursive approach (rightmost rule in Def. 7),194

we represent µt.G and G[µt.G/t] with the same tree, as their intensional behaviours are195

identical.196

▶ Definition 6 (global type trees). Global type trees are coinductively generated as follows.197

G ::= end | p → q : {ℓi(Si).Gi}i∈I
CoInductive gtt: Type ≜

| gtt_end : gtt
| gtt_send: part → part → list(option(sort*gtt)) → gtt.

198

▶ Definition 7 (global types → global type trees). Translating global types into global type199

trees is handled by the relation G−→ : G → G → Prop, with the following coinductive rules.200

∀i ∈ I, Gi
G−→ Gi

p→ q : {ℓi(Si).Gi}i∈I
G−→ p→ q : {ℓi(Si).Gi}i∈I end

G−→ end

G[µt.G/t] G−→ G

µt.G G−→ G
201

▶ Example 8 (translation). We present a global type G and its corresponding type tree,202

where internal nodes denote communications (p → q), and leaf nodes represent either payload203

types or end. Edges link internal nodes to a payload (ℓP) or a continuation (ℓC).204

G = µt.p→ q
{

ℓ1 (bool).t
ℓ2 (nat).end

G7−→

p→ q

bool endG
G−→

...

nat

ℓP
1

ℓC
1

ℓP
2

ℓC
2

205

We encode the relation G−→ in Coq as shown below.206

Inductive gttT (R : global → gtt → Prop) : global → gtt → Prop ≜
| ...
| gttT_rec: ∀ G Q G’, subst_global 0 0 (g_rec G) G Q → R Q G’ → gttT R (g_rec G) G’.

Definition gttTC G G’ ≜ paco2 gttT bot2 G G’.

207

Both g_rec G and its unfolding Q map to the tree G’ . The subst_global relation208

handles unfolding, using 0 s for sort and global type variables as de Bruijn indices.209

▶ Remark 9. Formalising translation in Coq follows the greatest fixed point of the least fixed210

point technique using the Paco library [30, 68]. We define an inductive Prop predicate211

gttT , acting as a generating function. It is parametrised by a relation R with the same212

signature, accumulating knowledge during coinductive foldings of gttTC . The greatest fixed213

point is derived using paco2 (as long as the generating function is monotone— gttT meets214

this condition as it is monotone ), initialised with the empty relation bot2 . The suffix 2215

indicates that the generating function has arity 2: global and gtt .216

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L11-L13
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?option=1#L80-L85
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?option=1#L64-L75
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L99-L118
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▶ Definition 10 (local types). Local types are inductively generated as follows.217

T ::= end | t | µt.T |
⊕i∈I

p!ℓi(Si).Ti | &i∈I
p?ℓi(Si).Ti

Inductive local : Type ≜
| l_end : local
| l_var : nat → local
| l_rec : local → local
| l_send : part → list(option(sort*local)) → local
| l_recv : part → list(option(sort*local)) → local.

218

The constructor &i∈I
p?ℓi(Si).Ti denotes external choice (branching) interactions with a219

set of messages towards participant p with labels ℓi, payload sorts Si and continuations Ti220

while ⊕i∈I
p!ℓi(Si).Ti stands for internal choice (selection) and specifies a set of messages221

from p with labels ℓi, payload sorts Si and continuations Ti.222

We derive tree structures from local types, similar to the global types (Definition 7),223

except that internal nodes represent branching (&) or selection (⊕).224

▶ Definition 11 (local type trees). Local type trees are coinductively generated as follows.225

T ::= end | ⊕i∈I
p!ℓi(Si).Ti |

&i∈I p?ℓi(Si).Ti

CoInductive ltt: Type ≜
| ltt_end : ltt
| ltt_send: part → list(option(sort*ltt)) → ltt
| ltt_recv: part → list(option(sort*ltt)) → ltt.

226

3.2 Projection and Consumption227

Projection extracts local type trees for a participant from global type trees, while consumption228

evolves global type trees by consuming communication actions.229

▶ Notation 12. We write p ∈g pt(G) to indicate that p appears in the global type tree G .230

▶ Definition 13 (projection). Projection onto a participant r is the largest relation231

↾r : G → T → Prop coinductively defined by the following rules.232

∀i ∈ I, Gi ↾r Ti

r→ q : {ℓi(Si).Gi}i∈I ↾r ⊕i∈I
q!ℓi(Si).Ti

[ps]
∀i ∈ I, Gi ↾r Ti

p→ r : {ℓi(Si).Gi}i∈I ↾r &i∈I
q?ℓi(Si).Ti

[pr]

∀i ∈ I, r /∈ {p, q} ∀j ∈ I, r ∈ pt(Gj) Gi ↾r T
p→ q : {ℓi(Si).Gi}i∈I ↾r T

[pc]
r /∈ pt(G)
G ↾r end

[pe]

233

Projection defines a participant’s role within a given protocol—here with a tree representation.234

Clearly, participants that do not occur have no specific role in the protocol, which is what235

rule [pe] states. Projecting onto the sending (resp. receiving) participant at the root of a236

given global type tree results in a local type tree featuring an internal (resp. external) choice237

where the root is the receiving (resp. sending) participant and
branches are local type trees obtained by coinductively applying
projection to the branches of the initial global type tree as estab-
lished by the rule [ps] (resp. [pr]). The rule [pc] states that if a
given global type tree begins with a communication from p to q, it
can be projected onto r, with r /∈ p, q, resulting in some local type
tree T if, for all continuations, r is involved (highlighted) and their
projection onto r is defined to be T—known as plain merging.

p→ q

p→ q

...

ℓC
1

ℓC
1

↾r

& p?

& p?

...

ℓC
1

ℓC
1

238

The highlighted condition is crucial as it prevents undesirable scenarios, such as the one239

depicted in the figure on the right. We develop projection in Coq as follows.240
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Variant projection (R: gtt → part → ltt → Prop): gtt → part → ltt → Prop ≜
| ...
| proj_cont: ∀ p q r xs ys t, p ̸= q → q ̸= r → p ̸= r → isgPartsC r (gtt_send p q xs) →

Forall2 (fun u v ⇒ (u = None ∧ v = None) ∨ (∃ s g l, u = Some(s, g) ∧ v = Some l ∧ R g r l)) xs ys →
isMerge t ys → projection R (gtt_send p q xs) r t.

Definition projectionC g r t ≜ paco3 projection bot3 g r t.

241

For the global type tree gtt_send p q xs , the list ys contains the projections of every242

external choice found in the list xs , as ensured by the Forall2 condition. Additionally,243

isPartsC checks whether a participant occurs in a global type tree by verifying if it is244

a member of the type from which the tree is extracted. This condition is the highlighted245

case in Definition 13. The isMerge predicate indicates that the projections of the entire246

continuation onto the participant r (distinct from p and q ) are identical and equal to247

some local type tree t . Therefore, the projection of the global tree onto r results in t . In248

the rest, we use the notation G ↾p T to represent the proposition projectionC G p T .249

Global types trees, evolve by consuming communication actions. This allows sessions to250

remain well-typed even after taking several β steps. See Theorem 35.251

▶ Definition 14 (global type tree consumption). The step (consumption) relation \p ℓ−→252

q : G → G → Prop over global type trees, is defined using the following coinductive rules.253

∀i ∈ I, ∃k ∈ I, ℓ = ℓk

(p→ q : {ℓi(Si).Gi}i∈I) \p ℓ−→ q Gk

[se]
∀i ∈ I, {r, s} ∩ {p, q} = ∅ ∀j ∈ I, {p, q} ⊆ pt(Gj)

(r→ s : {ℓi(Si).Gi}i∈I) \p ℓ−→ q (r→ s : {ℓi(Si).Gi\p
ℓ−→ q}i∈I)

[sn]254

A tree that begins with a communication from p towards q, p → q : {ℓi(Si).Gi}i∈I , can255

consume the communication p ℓk−→ q according to the input label ℓk, provided that it256

represents a valid branch. Once this communication is consumed, the tree transitions into the257

subtree Gk, as specified by the [se] rule. The [sn] rule ensures that the communication p ℓ−→ q258

is consumed coinductively across all continuation branches of the tree r → s : {ℓi(Si).Gi}i∈I ,259

as long as all participants are distinct and both p and q are explicitly present in every branch260

(highlighted). The relation is undefined in any other case, and developed in Coq as follows.261

Variant gttstep (R: gtt → gtt → part → part → nat → Prop): gtt → gtt → part → part → nat → Prop ≜
| ...
| stneq: ∀ p q r s xs ys n, p ̸= q → r ̸= s → r ̸= p → r ̸= q → s ̸= p → s ̸= q →

Forall (fun u ⇒ u = None ∨ (∃ s g, u = Some(s, g) ∧ isgPartsC p g ∧ isgPartsC q g)) xs →
Forall2 (fun u v ⇒ (u = None ∧ v = None) ∨ (∃ s g g’, u = Some(s, g) ∧ v = Some(s, g’) ∧ R g g’ p q n)) xs ys →
gttstep R (gtt_send r s xs) (gtt_send r s ys) p q n.

Definition gttstepC g1 g2 p q n ≜ paco5 gttstep bot5 g1 g2 p q n.

262

The condition with Forall2 ensures that the relation is coinductively applied over the263

list of continuations in xs , producing ys , where each branch takes the intended step.264

Meanwhile, the condition with Forall ensures that participants p and q appear in every265

branch, validated by isgPartsC . We define the predicate multiC to handle the reflexive266

transitive closure of the gttstepC relation. We use the notation G \p n−→ q G’ to represent267

the proposition gttstepC G G’ p q n .268

3.3 Subtyping269

Subtyping refers to a relation between types that allows one type (the subtype) to be used270

in place of another type (the super-type) in any context without causing type errors. This271

increases the flexibility of the type system.272

▶ Definition 15 (subtyping). The subtyping relation ⩽ : T → T → Prop over local type273

trees is coinductively defined by the following rules:274

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/part.v?plain=1#L15-L17
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/merge.v?plain=1#L9-L12
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/step.v?plain=1#L9-L25
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L71-L74
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/local.v?plain=1#L196-L205
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end ⩽ end

∀i ∈ I, Si ⪯ S′
i Ti ⩽ T′

i

⊕i∈I
p!ℓi(Si).Ti ⩽ ⊕i∈I∪J

p!ℓi(S′
i).T′

i

∀i ∈ I, S′
i ⪯ Si Ti ⩽ T′

i

&i∈I∪J
p?ℓi(Si).Ti ⩽ &i∈I

p?ℓi(S′
i).T′

i

275

Intuitively, a subtype permits fewer internal choices and requires more external ones. The276

symbol ⪯ denotes subsorting, the least reflexive relation over payload sorts (e.g., nat ⪯ int).277

Variant subtype (R: ltt → ltt → Prop): ltt → ltt → Prop ≜
| ...
| sub_out : ∀ p xs ys, wfsend subsort R xs ys → subtype R (ltt_send p xs) (ltt_send p ys).

Definition subtypeC l1 l2 ≜ paco2 subtype bot2 l1 l2

278

The subsort construct encodes the subsorting ⪯ relation while wfsend ensures that279

types (resp. sorts) in xs are subtypes (resp. subsort) of those in ys structurally, and280

allows ys to contain trailing sort - type pairs. We use the infix symbol ⩽ to denote the281

subtypeC relation and the symbol ⪯ for the subsort relation in the rest of the paper.282

3.4 Typing Rules283

We introduce type systems that govern processes, and sessions. Typing rules for expressions284

are folklore typ_expr thus skipped. Table 2 presents rules for processes and sessions.285

▶ Remark 16. Processes and sessions are typed with local and global type trees rather than286

types themselves, allowing greater flexibility by abstracting away challenges of recursion. A287

session M is then well-typed, ⊢ M : G, if G is the tree representation of some global type G,288

namely G G−→ G. Apart from that types do not play a critical role in the system we formalise.289

Γ ⊢p 0 : end
[tend]

Γ, X : T ⊢p X : T
[tvar]

Γ, X : T ⊢p P : T
Γ ⊢p µX.P : T

[trec]
Γ ⊢p P : T T ⩽ T′

Γ ⊢p P : T′ [tsub]

Γ ⊢s e : bool Γ ⊢p P1 : T Γ ⊢p P2 : T
Γ ⊢p if e then P1 else P2 : T

[tite]
∀i ∈ I, Γ, xi : Si ⊢p Pi : Ti

Γ ⊢p
∑

i∈I
p?ℓi(xi).Pi : &i∈I

p?ℓi(Si).Ti

[tin]

Γ ⊢s e : S Γ ⊢p P : T
Γ ⊢p p!ℓ(e).P : ⊕ p!ℓ(S).T

[tout]
∀i ∈ I, G↾pi Ti ⊢p Pi : Ti pt(G) ⊆ {pi | i ∈ I}

⊢m Πi∈Ipi ◁ Pi : G
[tsess]

Table 2 Typing processes and sessions

▶ Remark 17. We now discuss the issue with structural congruence, which arises in several290

previous works on MPST [2, 50, 17, 18]. These studies adopt a congruence relation, ≡, based291

on the axiom µX.P ≡ P[µX.P/X] which lets a recursive process and its unfolding to be292

congruent in both directions. This violates the subject reduction, as the following statement293

does not hold:294

Assume Γ ⊢p P : T and P ≡ Q. Then we have Γ ⊢p Q : T.

▶ Example 18 (Counterexample). Let P be p?ℓ(x).p!ℓ′(x).X. Then we have: ⊢p P[µX.P/X] :295

T, where T = p?ℓ(bool).p!ℓ′(bool).p?ℓ(nat).p!ℓ′(nat).T. However, ⊬p µX.P : T. By inverting296

the typing rules defined in Table 2, it can be established that if Γ ⊢ µX.P : T′′ for some T′′,297

then T′′ must be a supertype of some T′ where T′ = p?ℓ(S).p!ℓ′(S).T′. Notably, for any sort298

S, T is not a supertype of T′. Therefore, types are not preserved under folding.299

Our solution is to replace the structural congruence ≡ with a pre-congruence ⇛ where300

the foldback identities are disabled by the rules in Table 1. This is solution minimal in301

formalisation and already imported by some recently published work [61, 3].302
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Formalising process typing rules typ_proc , we maintain two contexts: ctxS for303

expression-sort pairs and ctxT for process-type pairs.304

Inductive typ_proc: ctxS → ctxT → process → ltt → Prop ≜
| tc_sub: ∀ cs ct p t t’, typ_proc cs ct p t → t ⩽ t’ → wfC t’ → typ_proc cs ct p t’
| tc_rec: ∀ cs ct p t, typ_proc cs (Some t :: ct) p t → typ_proc cs ct (p_rec p) t ...

305

The predicate wfC within the tc_sub constructor ensures that the local type tree t’306

is extracted from a local type lt such that lt is guarded, and its continuations are neither307

all None nor empty—well-foundedness property. We employ the notation Gs Gt ⊢ P: T308

and Gs ⊢ e: S to denote the propositions typ_proc Gs Gt P T and typ_expr Gs e S . The309

typing rule for sessions typ_sess is implemented as follows.310

Inductive typ_sess : session → gtt → Prop ≜
| tsess: ∀ M G, wfgC G → (∀ pt, isgPartsC pt G → InT pt M) → NoDup (flattenT M) →

ForallT (fun p P ⇒ ∃ T, G ↾p T ∧ nil nil ⊢ P: T) M → typ_sess M G.

311

The predicate ForallT applies a property over participants and processes to every parallel312

composition within a session. The function flattenT extracts all participants from a session313

in a list, while the inT function checks if a specific participant is present in the session. A314

session M is well typed by a global type tree G if for every composition p ◁ P in M , the315

type G is projectable onto p to yield a local type tree T , and the process P conforms to316

T . The session M must not contain any duplicate participants ( NoDup (flattenT M) ). If a317

participant appears in the global type tree G , it must also be present in the session M .318

▶ Note 19. The weakening wfgC G in tsess guarantees the existence of a global type,319

from which the tree G —typing session M —is derived using the translation in Definition 7.320

The purpose of using inductive syntax alongside coinductive semantics is to lift syntactic321

identity among types to a semantic notion of equivalence through translation employing322

equi-recursion, thereby simplifying property proofs. A similar outcome could, of course, be323

achieved by defining types directly using coinductive syntax.324

We prove translation “well-behaved” by showing that a global type and its unfolding325

translate to the same tree . To illustrate a translation, we verify Example 8 . Also, in the326

rest, parameters in the theorem statements are universally quantified unless otherwise stated.327

Lemma 20 inverts process typing rules for two cases. See inversion.v for all cases.328

▶ Lemma 20. Given Gs Gt ⊢ P: T ,329

(a) If P is of the form p_recv p xs , then ∃ option list ys of sort-local type tree pairs such330

that (ltt_recv p ys) ⩽ T and for all processes Q in xs and sort-local type tree pairs331

(s, t) in ys , we can reason that (Some s :: Gs) Gt ⊢ Q: t .332

(b) If P is of the form p_send p l e Q , then ∃ sort S and local type tree T’ such that333

Gs ⊢ e: S , Gs Gt ⊢ Q: T’ , and (ltt_send p (+[l] (Some (S,T’)))) ⩽ T .334

The function +[n] (called extendLis in the code) takes an instance a: A and returns
an option list of type A , where the first n elements are None , and the n th element is a .

335

3.5 Grafting, Balancedness and Well formedness336

We introduce global type tree contexts ΓG , representing finite prefixes of a global type tree337

G by truncating the infinite continuation at specific nodes, leaving holes at those points.338

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/typecheck.v?plain=1#L36-L56
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L151
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L39-L44
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L147
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L378-L394
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L427-L467
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/inversion.v
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/inversion.v?plain=1#L9-L14
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/header.v?plain=1#L88-L92
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/gttreeh.v?plain=1#L10-L12
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ΓG ::= p → q : {ℓi(Si).ΓGi}i∈I | [ ]i Inductive gtth: Type ≜
| gtth_send: part → part → list(option(sort*gtth)) → gtth
| gtth_hol : nat → gtth.

339

340

▶ Definition 21 (Grafting). The grafting operation constructs a global type tree G by341

filling all holes in an input context ΓG with non-⊥ elements of a specified option list of global342

type trees [G0, . . . , Gm], denoted ΓG[G0, . . . , Gm] = G. See Figure 2 for an example.343

ΓG =

p → q

bool [ ]0q → p
nat

int [ ]4[ ]3 nat

ℓP
1

ℓC
1 ℓP

2

ℓC
2

ℓP
3

ℓC
3 ℓP

4

ℓC
4

ΓG[G0, ⊥, G2, G3, G4, G5] =

p → q

bool G0q → p
nat

int G4G3 nat

ℓP
1

ℓC
1 ℓP

2

ℓC
2

ℓP
3

ℓC
3 ℓP

4

ℓC
4

Figure 2 Grafting Example

The grafting approach is used to inductively track finite prefixes of global type trees344

through contexts, offering a way to gain insights into infinite trees. The procedure for345

associating holes with global type trees for grafting purposes relies on how the holes are346

identified. In the gtth declaration, we make use of naturals to identify the holes. We then347

accordingly clarify a method for this association in the Coq declaration typ_gtth of grafting.348

349

Inductive typ_gtth : list (option gtt) → gtth → gtt → Prop ≜
| gt_hol : ∀ n l gc, onth n l = Some gc → typ_gtth l (gtth_hol n) gc
| gt_send: ∀ l p q xs ys, SList xs →

Forall2 (fun u v ⇒ (u = None ∧ v = None) ∨ (∃ s g g’, u = Some(s, g) ∧ v = Some(s, g’) ∧ typ_gtth l g g’)) xs ys →
typ_gtth l (gtth_send p q xs) (gtt_send p q ys).

350

The gt_hol constructor indicates which element from the option list l is used to fill each351

hole: the n th element of l fills gtth_hol n , provided it is not None . In the gt_send352

constructor, the condition SList xs ensures that the list xs contains Some continuation353

context, rather than being entirely composed of None values. Furthermore, the condition354

making use of Forall2 guarantees that all holes ( gtth_hol ) in the continuation list xs355

are filled with gtt s from the list l , resulting in a list of global type tree continuations ys .356

The gtth declaration allows a single natural number to reference multiple holes within357

a type tree context. In this case, holes are grafted with the same gtt . This design poses no358

issues as gtth is used only for grafting within typ_gtth . If the list of gtt s lacks enough359

information to fill even one hole, the grafting operation is undefined. Unused elements in the360

list play no crucial role either. Theorems in the paper consider only those used in grafting.361

The grafting aids proofs with infinite trees. One such example is the partiality of the362

projection : if projecting a well-formed (Definition 24) tree G onto a participant p results in363

trees T1 and T2, then T1 = T2, where “=” is Coq’s Leibniz equality. We omit the proof here364

but emphasise that to establish this in Coq, we use the coinductive extensionality principle365

(Axiom 22) to treat an isomorphism between local type trees “∼” as Leibniz equality.366

▶ Axiom 22 (coinductive extensionality). ∀T1 and T2, we assume T1 ∼ T2 =⇒ T1 = T2.367
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https://github.com/Apiros3/smpst-sr-smer/blob/main/src/gttreeh.v?plain=1#L33-L37
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▶ Remark 23. In Coq, local type trees can be characterised by the type lttmapA , representing368

partial functions that map paths—lists of natural numbers list nat and Booleans bool —to369

nodes node [16, Definition A.4]. These nodes include actions like send lnode_send , receive370

lnode_recv , end lnode_end , and payload sorts lnode_s , with the Boolean flag indicating371

whether to consider payload sorts or continuations in the tree.372

Inductive lnode : Type ≜
| lnode_end : lnode
| lnode_send: part → lnode
| lnode_recv: part → lnode
| lnode_s : sort → lnode

Inductive lttmapA: list nat → bool → lnode → Prop ≜
| lend : lttmapA nil false lnode_end
| lcons : ∀ p w gn l L, lttmapA w false (lnode_send p) → In l L → lttmapA (w ++ [l]) false gn
| lcsend: ∀ p w gk l, lttmapA (w ++ [l]) false (lnode_send p) → lttmapA w false gk
| lcsort: ∀ w s gk l, lttmapA (w ++ [l]) true (lnode_s s) → lttmapA w false gk ...

373

We justify that Axiom 22 does not introduce unsoundness in Coq by leveraging isomorph-374

isms between coinductive and function types [1]. Specifically, ltt with the coinductive375

extensionality is isomorphic to lttmapA with functional extensionality. Thus, characterising376

local type trees using (1) partial functions with functional extensionality and (2) positive377

coinductive types with coinductive extensionality are equivalent. Thus, Axiom 22 is sound.378

▶ Definition 24 (Balancedness). G is balanced, if ∀ subtree G′ of G, whenever p is in379

participants of G, p ∈g pt(G′), then ∃k ∈ N such that380

1. ∀ paths γ, of length k, from the root of G′, p is involved in a node along γ381

2. ∀ paths γ leading to an end, from the root of G′, p is involved in a node along γ.382

G =

p → q

nat
q → r

G
int

int end

ℓP
1

ℓC
1

ℓP
2

ℓC
2

ℓP
3 ℓC

3

Balancedness is best exemplified via its negation. Figure
on the left depicts an example of an unbalanced tree G.
Observe that the path with labels ℓC

1 has no r.
Well-formedness : Global type tree G is well-
formed ( wfgC ) if ∃ global type G, where recursion is
guarded and all continuations are both non-empty and
non-⊥, such that G G−→ G and G is balanced.

383

▶ Note 25. In all of the following statements, global type trees are assumed to be well-formed.384

Additionally, we write p ∈h pt(Gl) when p appears in the global type tree context Gl .385

Also, balancedness is a regularity condition that ensures liveness, meaning that all sends386

and receives in the protocol prescribed by a given type tree are eventually executed. For387

unbalanced trees, the grafting technique described above cannot be applied; specifically,388

Lemma 26 cannot be established.389

▶ Lemma 26. If p ∈g pt(G) , then ∃ an option list L of global types and a context Gl390

such that typ_gtth L Gl G with p /∈h pt(Gl) . Each element filling a hole in Gl from L391

is of gtt_send p q lsg , gtt_send q p lsg or gtt_end shape, for some participant q and392

option lists lsg of sort-global type tree pairs.393

The statement asserts that a global type tree can be formed by grafting a tree context,
excluding a specific participant, by a list of global type trees with particular structure.

394

Proof follows by induction on the length k of the paths ( gttmap ) within balanced global395

type trees.396

https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L140-L144
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L147
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/decidable.v?plain=1#L205-L210
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L15-L19
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4 Proof of Non-stuck Theorem in Coq397

This section presents a Coq formalisation of the non-stuck theorem for synchronous multiparty398

session types, proven through subject reduction and progress. Figure 3 illustrates the399

interrelations among the lemma/theorem statements discussed in § 3 and § 4.

Lem 26 Lem 28

Lem 29

Lem 30 Lem 20

Lem 31

Lem 33

Lem 34

Lem 32

Thm 35

Lem 37 Thm 38 Thm 40

Figure 3 Dependency Graph
400

▶ Notation 27. We write li to refer to onth i l , where i is some index and l is a list.401

▶ Lemma 28. If we have G ↾p (ltt_send q l1) , G ↾q (ltt_recv p l2) , (snd l1)n = T ,402

(snd l2)n = T’ and G \p n−→ q G’ then G’ ↾p T and G’ ↾q T’ hold.403

This statement preserves projections of global type trees under the consumption relation.
Given a well-formed tree G with projections onto p and q , where p sends to q with
continuations l1 , q receives from p with continuations l2 , and n th elements of these
lists are T and T’ . If the communication step “ p to q ” in G is consumed with the n th

continuation, the resulting projections onto p and q yield T and T’ .
404

▶ Lemma 29. Given G ↾p (ltt_send q l1) , G ↾q (ltt_recv p l2) , (snd l1)n = T ,405

(snd l2)n = T’ , G \p n−→ q G’ and G ↾r T’’ , ∃ L such that G’ ↾r L and L = T’’ .406

The statement is a variation of Lemma 28 in that the final projection is not restricted to the
participants involved in the consumed communication step.

407

▶ Lemma 30. Given G ↾p (ltt_send q l1) , G ↾q (ltt_recv p l2) and (l1)n = (s, T) ,408

∃ a sort s’ and a local type tree T’ such that (l2)n = (s’, T’) .409

This property ensures the “well-definedness condition” of projections: continuations do not
result in None . Specifically, for a well-formed tree G with projections onto p and q , where
p sends to q with continuations l1 and q receives from p with continuations l2 , if the
n th continuation in l1 is well-defined, then the n th continuation in l2 is also well-defined.

410

▶ Lemma 31. Given G ↾p (ltt_send q l1) , G ↾q (ltt_recv p l2) and G \p n−→ q G’ ,411

∃ sorts s , s’ and local type trees T , T’ such that (l1)n = (s, T) and (l2)n = (s’, T’) .412

The statement establishes “well-definedness” of projections with respect to the consumption.
413

To complete proofs of Lemmas 28, 29, 30, and 31, we apply Lemma 26 (w.r.t. participant414

p ) and obtain the global type tree context, then proceed by induction on this context.415

ITP 2025

https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L869-L876
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L1313-L1324
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L588-L593
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection_helper.v?plain=1#L1879-L1884


19:14 Formalising Subject Reduction and Progress for Multiparty Session Processes

▶ Lemma 32. Given G ↾p (ltt_send q l1) , G ↾q (ltt_recv p l2) , G \p n−→ q G’ and416

for every participant-process pair s_ind u P in M , ∃ local type tree T such that G ↾u T417

and nil nil ⊢ P: T , we obtain that for every participant-process pair s_ind u P in M , ∃418

local type tree T such that G’ ↾u T and nil nil ⊢ P: T .419

This statement connects projectability, consumption, and typability of global type trees.
Given a well-formed tree G , where p sends to q and q receives from p , and G types
the session M which does not contain p and q , if G transitions to a well-formed G’

by consuming the action “ p to q (with some arbitrary label n )”, then G’ also types
participant-process pairs in M .

420

The proof proceeds by induction on the structure of M , obtaining the base case thanks to421

Lemma 31 and Lemma 29, while the step case follows from the induction hypothesis.422

▶ Lemma 33. If G ↾p (ltt_send q l1) , G ↾q (ltt_recv p l2) , (xs)n = (s’,T’) ,423

ltt_recv p xs ⩽ ltt_recv p l2 and ltt_send q (+[n] (s, T)) ⩽ ltt_send q l1 , then ∃424

global type tree G’ such that G \p n−→ q G’ .425

This property derives consumption information from projectability and subtyping predicates.
For a well-formed global type tree G with projections onto p and q , where p sends to q

with continuations l1 and q receives from p with continuations l2 , if the n th elements of
l1 and l2 are supertypes of some types T , T’ (rather than being T , T’ —relaxed), then

consuming the communication “from p to q ” using the n th continuation is well-defined.
426

Inverting the second subtyping predicate and Lemma 30 reveals a sort and a local type tree.427

Lemma 26 provides a global type tree context, on which the proof proceeds by induction.428

▶ Lemma 34. If we have (Some S :: Gs) Gt ⊢ P: T and Gs ⊢ e: S then429

Gs Gt ⊢ (subst_expr_proc P e 0 0): T holds.430

The statement says that substituting a typed expression in a typed process is type preserving.
431

The proof follows from induction on the process P .432

▶ Theorem 35 (subject reduction). If we have typ_sess M G and betaP M M’ then ∃433

G’ such that typ_sess M’ G’ and multiC G G’ hold.434

The statement also known as session fidelity [26, Corollary 5.23] or protocol conformance.
435

Proof. We start with structural induction on the predicate betaP M M’ and handle the case436

for r_comm here, skipping the remaining cases due to lack of space. In this case, we are given437 {
(H) typ_sess (((p ← p_recv q xs) ||| (q ← p_send p n e Q)) ||| M) G ,
(Hn) xsn = Some y .438

with e reduces into the value e_val v , and the goal looks like439 {
(G1) ∃ G’,typ_sess (p ← subst_expr_proc y (e_val v) 0 0 ||| q ← Q ||| M) G’

(G2) multiC G G’ .
440

https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main_helper.v?plain=1#L115-L130
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L845-L852
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/substitution.v?plain=1#L157-L160
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main.v?plain=1#L10
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G

T

G

T’

T = ltt_recv q [..(s,TL’)..] T’ = ltt_send p [..(s,TL)..]

p_recv q [..y..]:

T ⩾ ltt_recv q [..(x0,x1)..] ⩾ ltt_send p (+[n] (s, LT))

T’p_send p n e Q:

G’ G’

TL’ TL

↾p ↾q

Lem 20 (a) Lem 20 (b)

Lem 33

Lem 31

Lem 28

Lem 33

Lem 31

Lem 28

↾p ↾q

In the above diagram, we illustrate a sequence of preprocessing steps to build a goal context.441

These steps involve inversion and lemma application to derive new hypotheses. Arrows442

indicate applications, straight lines show projections, and double lines share endpoints.443

By inverting H and Hn, we obtain the judgments p_recv q [..y..]: T ,444

p_send p n e Q: T’ , nil ⊢ e_val v: s , G ↾p T , and G ↾q T’ , for some sort s , and local445

type trees T , T’ , where [..n..] denotes the nth member of a list. Lemma 20 describes446

the structure of T and T’ with respect to subtyping: ltt_recv q [..(x0,x1..)] ⩽ T and447

ltt_send p (+[n] (s, LT)) ⩽ T’ , for some option list [..(x0,x1..)] of sort-local type tree448

pairs and LT of local type tree, such that (Some x0 :: nil) nil ⊢ y : x1 . These relations449

show that T is of the form ltt_recv q , and T’ is of the form ltt_send p . Given this450

structure, Lemma 33 further establishes the existence of G’ such that G \q n−→ p G’ .451

From the step into G’ and the projections of G , Lemma 31 implies that the nth
452

continuations of T and T’ are (s, TL’) and (s, TL) , for some local type trees TL and453

TL’ . Given this, Lemma 28 further provides that G’ ↾p TL’ and G’ ↾q TL .454

We apply tsess and tc_sub to G1 after substituting G’ as the existential argu-455

ment. This reduces the proof to nil nil ⊢ (subst_expr_proc y (e_val v) 0 0): x1 and456

nil nil ⊢ Q: TL . Lemma 34 reduces the first statement to (Some x0 :: nil) nil ⊢ y: x1457

and nil ⊢ e_val v: x0 . The former was established earlier, and the latter follows by458

inverting ltt_recv q [..(s,TL’)..] ⩾ ltt_recv q [..(x0,x1)..] and applying sc_sub .459

The second statement follows from Lemma 32, using G ’s projection and transition to G’ .460

Finally, G2, multiC G G’ , follows from G \p n−→ q G’ . ◀461

▶ Example 36. We show an application of Theorem 35 to [16, Ex. 3.17]. The code is here .462

▶ Lemma 37 (canonical forms for processes and sessions). ( , )463

Given typ_sess M (gtt_send p q xs) , ∃ session M’ such that unfoldP M M’ and M’464

is of p ← P ||| q ← Q ||| M’’ or p ← P ||| q ← Q form.465

Given typ_sess M gtt_end ∃ session M’ such that unfoldP M M’ and every process in466

M’ is either p_inact or p_ite e Q Q’ and nil nil ⊢ (p_ite e Q Q’): ltt_end .467
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The statement derives canonical forms of sessions up to unfolding.
468

Proof. By induction on M , and unfolding recursion an appropriate number of times. ◀469

▶ Theorem 38 (progress). If typ_sess M G , then ∃ session M’ such that betaP M M’ ,470

or both unfoldP M M’ and every process in M’ is p_inact .471

Proof. By a case split on G and matching with Lemma 37. ◀472

▶ Definition 39 (stuck). A multiparty session M is stuck if ∄ M’ such that betaP M M’ ,473

and ∄ M’’ such that both unfoldP M M’’ holds and every process in M’’ is p_inact . A474

session M gets stuck ( stuckM M ) if it reduces to a stuck session.475

▶ Theorem 40 (non-stuck). If typ_sess M G , then stuckM M → False .476

Proof. Corollary of Theorems 35 and 38. ◀477

5 Related Work and Conclusion478

Castro-Perez et al. [6] introduced Zooid, a domain-specific language embedded in Coq for479

certified multiparty communication. Zooid ensures mechanised soundness and completeness480

through trace equivalences between the label transition systems of local and global types,481

preserving properties like deadlock freedom and protocol compliance.482

Tirore et al. [60] introduced a novel computable projection function, mapping global483

types into local types. This function is formally verified in Coq to be sound and complete484

with respect to its coinductive tree semantics. Their work focuses exclusively on projections.485

Ekici and Yoshida [13] formalised a framework for asynchronous MPST in Coq, proving486

that precise subtyping, as in [17, 18], is complete. The focus is on action reorderings thus487

protocol optimisations in asynchronous interactions. Neither [60] nor [13] includes a process488

or typing calculus, missing proofs of subject reduction, progress, and type safety.489

Hinrichsen et al. [22, 19, 20] developed Actris, a tool integrating separation logics with490

asynchronous session types (with subtyping), built on the Coq Iris program logic [40, 38, 37,491

36]. Jacobs et al. extended Actris into LinearActris [35], incorporating linear logic to ensure492

deadlock and leak freedom. Their work is limited to binary session types.493

Hinrichsen et al. [21] introduced the Multris framework, combining separation logic494

for verifying functional correctness with multiparty message-passing and shared-memory495

concurrency. They formally proved protocol consistency within the Coq Iris environment,496

drawing inspiration from the bottom-up approach to MPST in [53], which focuses on local497

types. Therefore, inherent properties of global types are not proven for Multris.498

Tassarotti et al. [55] developed a compiler for a functional language with binary session499

types, based on a simplified version of the GV system [14], and formally verified its correctness500

in Coq. Jacobs et al. [34] extended this work into MPGV which enhances linear lambda501

calculus with multiparty sessions, supporting participant redirecting and dynamic thread502

spawning. Their type system includes global and local types, with local types handling503

linear data. Deadlock freedom is ensured by representing cyclic communication as an acyclic504

graph, eliminating the need for central coordination. The proof [34, Theorem 5.7] uses505

separation logic and configuration invariants to ensure preservation and progress, showing506

that configurations satisfying the invariant cannot get stuck.507

Tirore [59] in his PhD thesis formalises subject reduction in Coq for the multiparty session508

π-calculus in [26], incorporating session initialisation and delegation. The type system uses509

https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main.v?plain=1#L233
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L77
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/main.v?plain=1#L550
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channel-explicit global and local types, with projections derived from [60]. Channel-explicit510

types further require linearity checks, ensuring global types to be projectable, therefore511

making the formalisation harder to extend or integrate with other systems, as most session512

type systems (including ours) use channel-implicit types. In a subsequent work, Tirore et513

al. [58] extend the results of his thesis by formalising the proofs of communication safety and514

safety preservation in Coq.515

Brady [5] designed secure communication protocols for binary sessions in Idris, while516

Thiemann et al. [57] formalised progress and preservation for binary session types in Agda.517

Hirsch and Garg introduced Pirouette [23], a choreographic language with formal guaran-518

tees verified in Coq. Cruz-Filipe et al. [10] formalised the theory of choreographic program-519

ming in Coq. Pohjola et al. [51] presented Kalas, a compiler for a choreographic language520

whose correctness has been verified within HOL4.521

Comparison. Unlike [59], our subject reduction property ensures protocol conformance522

(session fidelity) [26, Corollary 5.23]. We formalise progress and non-stuckness too. In contrast523

to [34], our language extends a core multiparty session calculus with key MPST features. The524

type system, based on channel-implicit global and local types with coinductive projections,525

guarantees: (1) deadlock freedom via a top-down approach, (2) the non-stuck theorem through526

subject reduction and progress and (3) incorporates subtyping. Our formalisation is designed527

to be extensible, allowing for future enhancements such as incorporating projection with full528

merging, and properties like fairness and liveness (discussed below).529

In Coq. Tirore [59], Castro-Perez et al. [6], and our formalisation use inductive syntax for530

types and coinductive syntax for (equi-)recursive type unfoldings. In these works, projection531

is defined using plain merging. While [59] and [6] model consumptions using LTS semantics,532

we implement a coinductive step relation. These formalisations use paco constructs to define533

coinductive relations. Jacobs et al. [34] use coinductive syntax for types and corecursion to534

capture repetitive behaviour, formalised in Coq with native coinduction.535

Formalising µ types is challenging. One approach uses infinite unfoldings over a coinductive536

tree, while another defines types directly within a coinductive framework. Coinductive537

techniques aid proof mechanisation in Coq but complicate rewriting codata (Leibniz equality538

is undecidable). A common solution is defining a bisimulation over coinductive structures539

and assuming extensionality principles, aligning bisimilarity with Coq’s Leibniz equality.540

Future Work. Our future work includes extensions to the coinductive full merging [62,541

Definition 4.23] and the proof of liveness [67]. These extensions are plausible as in many542

parts of the codebase, proofs will remain unaffected by changes to the merging operator.543

Additionally, statements concerning projections can often be directly reused or require minor544

adaptations to support the proofs needed for liveness.545

▷ Full Merging. The proof for the coinductive full merge is largely self-contained, requiring546

modifications to the proofs of Lemmas 28 and 29. Key statements as typ_after_step_1547

remain valid and follow by induction on the global type tree context. Adjustments are548

needed, particularly for typ_after_step_3_helper , where we establish subtyping instead549

of strict equality. This change has minimal impact on the rest of the codebase.550

▷ Liveness. We will introduce typing contexts—distinct from those in grafting—as551

participant-local type tree pairs, linked to global type trees via projection. Their reductions,552

based on transition labels, yield (potentially) infinite traces. Using LTL constructs, we say a553

trace is live if every enabled reduction is eventually executed, and this always holds. We aim554

to prove in Coq that if a global type tree has an associated typing context, then the context555

is live. Existing proofs using projection can be adapted for reuse at the typing context level.556
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