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—— Abstract

Multiparty session types (MPST) provide a robust typing discipline for specifying and verifying
communication protocols in concurrent and distributed systems involving multiple participants. This
work formalises the non-stuck theorem for synchronous MPST in the Coq proof assistant, ensuring
that well-typed communications never get stuck. We present a fully mechanised proof of the theorem,
where recursive type unfoldings are modelled as infinite trees, leveraging coinductive reasoning. This
marks the first formal proof to incorporate precise subtyping, aiming to extend the typability of
processes thus precision of the type system. The proof is grounded in fundamental properties such
as subject reduction and progress.

During the mechanisation process, we discovered that the structural congruence rule for recursive
processes, as presented in several prior works on MPST, violates subject reduction. We resolve this
issue by revising and formalising the rule to ensure the preservation of type soundness.

Our approach to formal proofs about infinite type trees involves analysing their finite prefixes
through inductive reasoning within outer-level coinductively stated goals. We employ the greatest
fixed point of the parameterised least fixed point technique to define coinductive predicates and
use parameterised coinduction to prove properties. The formalisation comprises approximately 16K
lines of Coq code, accessible at: https://github.com/Apiros3/smpst-sr-smer.
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1 Introduction

Distributed and concurrent systems rely on message-passing for communication, guided
by predefined protocols. Ensuring protocol conformance is crucial to prevent failures like
deadlocks and mismatched communications. Session types, rooted in process calculi [25, 54],
provide a type-theoretic framework for specifying communication structures. Initially designed
for two-party interactions [24], they were extended to multiparty session types (MPST) to
support multi-participant protocols [17, 66]. MPST have been implemented in various
languages, including Java [39, 4, 28, 29], Scala [52, 2, 64, 9], OCaml [31, 32], F* [69],
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Ft [46], Python [48, 12], Erlang [47, 45], MPI-C [49, 43], Go [8, 7], TypeScript [15, 44],
and Rust [11, 41, 42, 63, 33]. Session types have also been formalised in proof assistants,
particularly Coq [22, 19, 20, 35, 21, 34, 6, 60, 13], Idris [5, 27], and Agda [57]. For a
comprehensive discussion, see [65].

MPST describes communication protocols as global types, outlining interactions among
participants, which are then projected into local types for individual processes. A session
represents an instance of a protocol, structuring message-passing. MPST supports various
synchronisation models. In synchronous MPST [16], communication requires real-time
coordination between senders and receivers, ensuring protocol compliance and message order.

This work extends MPST and synchronous communication [16] with a mechanised proof
of the non-stuck theorem using coinductive reasoning over type trees. These trees, derived
from global and local types, represent recursive structures via infinite unfoldings. The proof
exploits type tree properties to refine projection accuracy under subtyping. A key novelty is
integrating subtyping into type checking, unlike prior mechanisation efforts [34, 6, 60] that
prove progress for MPST. In Coq, infinite trees are defined using positive coinductive types,
differing from function-based definitions in [16, Definition A.4]. To ensure that structural
equivalence (isomorphism) of infinite trees is aligned with Coq’s Leibniz equality, we introduce
a coinductive extensionality axiom (Axiom 22); see Remark 23 for a justification of soundness.
Our type system guarantees:

1. subject reduction: if a typed session M reduces to M’, then its typing tree G transitions
via consumption steps (Definition 14) to a new tree G’ that types M’;
2. progress: every session M either terminates or reduces to another session M’.

The non-stuck theorem, which states that “well-typed sessions are free of communication
errors (e.g., label mismatch, polarity mismatch, etc.) and always either normally terminate
or evolve into well-typed sessions,” follows as a corollary of these properties.

Defining structural congruence as a symmetric relation, as in some prior work [2, 16, 50,
17, 18], invalidates subject reduction. To address this, we redefine congruence for processes
and sessions (Table 1), disabling symmetry by removing foldback identities. This issue was
identified and addressed during the formal proof process. The fix, detailed in § 3.3 (see
Rem.17 and Ex.18), highlights the importance of formalisation.

Terms are categorised into processes and sessions, with types divided into channel implicit
global (G) and local types (T). Traditionally, global types validate sessions, while local
types validate processes. Global types define multi-party protocols, while local types specify
individual roles. Both use the recursion binder u to model repetition. The projection relation
maps global types to local ones for each participant. This is the top-down method. Figure 1
illustrates both the subject reduction proof structure and our design choices. We interpret
global and local types onto coinductive type trees, avoiding the p binder by leveraging
circularity of coinduction. Our equi-recursive approach treats recursive types as equivalent
to their unfoldings, mapping both to the same type tree. In our setting, global type trees
(G) type multiparty sessions (M), while local type trees (T) type processes (P). We ensure
that a global type always exists that unfolds into the tree used for typing a given session.
The process typing b, is enhanced by the subsumption rule, allowing a supertype T’ to type
any process of type T. When a well-typed session kg M: G evolves into M’, a global type
tree G’ is obtained by consuming actions of G, ensuring - M’: G'(subject reduction). All
concepts in Figure 1, along with the non-stuckness property, are implemented in Coq [56].
The formalisation is available at: https://github.com/Apiros3/smpst-sr-smer.

Key Insight for Mechanisation. Proving statements that involve multiple coinduct-
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Figure 1 Design overview

ive declarations over infinite trees is challenging in Coq. We address this by (vertically)
decomposing a tree into a finite prefix that excludes certain structures (e.g., participants
in balanced trees—Lemma 26), then applying induction to reason about the finite portion
within an outer coinductive goal.

Additionally, we use list structures to encode the finite width of a given tree, rather than
function types or infinite structures such as colists. This choice simplifies proofs about trees,
as it enables inductive reasoning on the width. However, it renders corecursive functions (e.g.,
translations from types to trees) ill-formed, since the inner finite structure prevents them
from being productive. To address this, we axiomatise such functions as coinductive data
types in Coq’s Prop . While not required for the current development, we could leverage
the axiom constructive indefinite description to inject computational content in and prove
existential properties over trees. We believe these design choices are reasonable, as they
scaled effectively and ultimately led to our non-stuck proof for MPST in Coq. We also
employ the Paco library [30, 68], which facilitates coinductive proofs by bypassing Coq’s
syntactic guardedness checks.

Our mechanisation of a core top-down MPST system highlights key challenges, and
designed for extensibility, it supports future adaptations, including merging [16, Definition
3.6] in projection and properties like liveness [67, Definition 12]. See § 5 for details. In
the accompanying library, we employ classical reasoning to conduct case analysis primarily
over coinductively defined predicates. The library comprises around 16K lines of Coq code,
containing 341 proven lemmata and 117 definitions.

2  Synchronous Multiparty Session Calculus

In this section, we introduce the process calculus for sessions, employing a semi equi-
recursive approach. This approach ensures that a recursive process and its unfolded form are
represented identically, while preventing folded versions of an already unfolded process from
being considered equivalent. This distinction plays a key role in establishing the proof of
subject reduction theorem. Further details on this approach are covered in § 2.1.

» Note 1. Throughout the paper, we hyperlink Coq source code to the symbol ¥, while
highlighted text denotes excerpts from the Coq source.

We introduce some preliminaries. Processes interact by exchanging expressions ( expr
in Coq), denoted by e. An expression can be a value (e_val ), such as an integer, natural
number, or boolean constant, or it may be recursively formed using operators like succ
( e_succ ), not ( e_not ), - ( e_neg ), > ( e_gt ), and + ( e_plus ) The language of processes
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is inductively defined by the following constructors ¥.

. N
o | ( ) | Z ? ( ) . | Inductive process : Type =
P T p,f € 'P €1 p"gl T 'P'L | p_send : part — label —» expr —»> process —> process
. | p_recv : part — list(option process) —» process
lf € then P else P | | p_ite : expr — process — process — process
| p_rec : process —» process
,U/XP | X | p_var : nat — process

| p_inact : process.

The first constructor defines a process that sends an expression e, tagged with label ¢, to
participant p, and then proceeds as P. The second one defines a process that receives a list
of messages from participant p, each tagged with labels ¢;. These messages are then bound
to expression variables x; within the corresponding continuations P;. The constructor “if
e then P else P’” is the conditional process representing the choice between processes P
and P’. We represent inactive processes with 0 and process variables with X. We employ
de Bruijn indices to represent process variables in Coq. Processes can be recursive, thanks
to the p-binder. We assume guarded recursion, meaning (1) recursion always unfolds to a
receive or send, and (2) all process terms are closed—e.g., uX.X is invalid as it violates (1).

» Definition 2 (option lists). An option list of some type A is a list in which each element
is either of type A or the “none” value, denoted by 1.

» Remark 3. In the accompanying Coq declaration process, the p_recv constructor uses
an option list of processes. Non-existing labels are represented as None . Each label maps to
an index in the option list. For example, if the third element in the list is Some P , it indicates
that the label indexed by three has a valid continuation P ; if it is None , no continuation is
associated with that label. Using option lists eliminates the need to search for labels. We
apply this approach throughout the paper when necessary. This method is sound in our
setting, as no label is ever used to identify more than one continuation.

A multiparty session ¥ is parallel composition “|” of participant-process pairs, denoted p < P.

- Inductive session: Type 2
M L p < P | M | M | s_ind : part — process — session

| s_par : session — session —> session.

We employ the notation M ||| M’ to denote the parallel composition s_par M M’ of
sessions, and p < P for the individual case s_ind p P.

2.1 Structural Pre-Congruence and Reduction Rules

The operational semantics for expressions is immaterial and therefore omitted. Instead, we
present the reduction rules for sessions in Table 1 (below the dashed line). These rules rely
on a non-symmeltric yet transitive preorder relation, = (above the dashed line). A discussion
of an issue found in previously published literature [2, 50, 17, 18], which violates subject
reduction due to the use of symmetric and transitive congruence, is postponed to Remark 17
and Example 18, as it becomes more apparent under the typing rules listed in Table 2.
The rule [ro-unr] permits treating a recursive process, within a session, and its unfoldings as
congruent, but not vice versa. The rule [po-rerM] extends this idea, allowing the reordering of
participant-process pairs in parallel compositions.

» Notation 4. The notation [, ; ps<P; represents a session composed of parallel compositions
pi<P; foralliel.

The [r-com] rule in Table 1 governs the synchronous interaction between participants p and
g such that g sends an expression payload e towards p with the label ¢; and continues as
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J is a permutation of I

[PO-UNF] [PO-PERM]
pauX.P|M = paPuX.P/X]| M Hie[piqpi = Hjerdej
viel jel elvw
[R-comM]
P iera?i(wi).Pi | a<plti(e)Q | M — p<aPjfv/z;] | qaQ | M
e | true M= M1 Mi— Mz May= M,
[RT-1TE] [R-STRUCT]

paifethenPelseQ | M — p<aP | M My — M)

Table 1 Session Structure Pre-Congruence (top) and Reduction Rules (bottom): we omit [rr-1TE]

the process Q. In the meantime, p awaits to receive the payload, performs the label match
immediately after the reception, substitutes the value v (obtained by reducing the expression
e, e | v) within the process P; with the expression variable z;, and resumes as is. If some
participant p behaves as a conditional process if e then P else Q, it resumes as P in case
the expression evaluates to true, governed by the [rr-rre] rule, or as Q otherwise, [re-rre] rule.
The rule [r-struct] ensures that session reduction respects the pre-congruence = of sessions.
We formalise these rules employing a Prop valued relation over sessions, betaP ¥:

Inductive betaP : relation session 2
I ooo
| r_comm : V (p q : string) (xs : list (option process)) (y : process) (1 : nat) (e : expr) (v : value) (Q : process) (M : session),
onth 1 xs = Some y — stepE e (e_val v) —
betaP (((p <— p_recv q xs) ||| (g «— p_send p 1 e Q) Il M) (((p « subst_expr_proc y (e_val v) 0 0) |l (g += @) [II M)
r_struct: V (M1 M1’ M2 M2’: session), unfoldP M1 M1’ — unfoldP M2’ M2 — betaP M1’ M2’ — betaP M1 M2.

1 ™ member y of the

As part of the r_comm constructor, the function onth computes the
continuation option list of processes xs . The expression e is evaluated to the value e_val v
by the stepE predicate ¥, and the corresponding expression variable is substituted into
y using the subst_expr_proc function ¥. The unfoldP predicate ¥ within the r_struct

constructor represents the pre-congruence relation =.

3 Type System

This section covers fundamental concepts such as types, type trees, and key operations like
projection, consumption, subtyping, and typing, which underpin the non-stuck theorem. In
§ 3.5, we introduce type tree contexts and the grafting operation, allowing traversal of finite
prefixes in infinite trees—essential for reasoning about balanced infinite trees.

3.1 Types and Trees

Global types provide a high-level overview of the communication protocol, offering a compre-
hensive perspective on the interactions and roles of all participants involved.

» Definition 5 (global types). ¥ Global types are inductively generated by:

S n= nat | int bool Inductive global : Type 2
— | g_end : global
G = end | t | ,UtG ‘ | g_var : nat — global
| g_send: part — part — list(option(sort*global)) —> global
p—q: {éz (Si)-Gi}iEI | g_rec : global — global.

The constructor p — q : {¢;(S;).G;}icr denotes a communication from participant p to
participant q with a set of messages, each identified by a label /¢;, payload sorts S;, and
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continuations G;. The end signals the end of the protocol. Recursive types are enabled by
the p binder, and t represents type variables. We assume guarded recursion. That is, after a
finite number of unfoldings, a u-type either allows an arbitrary sequence of communication
choices or reaches termination—ut.t is not a valid type. Similar to the case of processes, we
use de Bruijn indices to represent global type variables (also for local types; see Definition 10).
We develop sorts as a variant in Coq with constructors snat , sint and sbool .

A tree structure can be derived from a global type, where recursive types are represented
by their infinite unfoldings. Using the equi-recursive approach (rightmost rule in Def. 7),
we represent ut.G and Glut.G/t] with the same tree, as their intensional behaviours are
identical.

» Definition 6 (global type trees). ¥ Global type trees are coinductively generated as follows.

G u= end | p—q:{li(S)Glier o

| gtt_send: part — part — list(option(sort*gtt)) — gtt.

» Definition 7 (global types — global type trees). ¥ Translating global types into global type
trees is handled by the relation 9.6 >G> Prop, with the following coinductive rules.

Viel, Gi %G GlutG/f % G

p—q:{li(S:).Gslier g, p—q:{li(S:).Gitier end 75 end ut.G 9.6

» Example 8 (translation). We present a global type G and its corresponding type tree,
where internal nodes denote communications (p — q), and leaf nodes represent either payload
types or end. Edges link internal nodes to a payload (¢7) or a continuation (¢°).

—

2
G — it s o 010001t 9, ool /ﬁf/ gp\end
—HEP T £2(nat).end a 2
lo nat

We encode the relation 2 in Coq as shown below.

Inductive gttT (R : global — gtt — Prop) : global —» gtt —» Prop =

I 5ae
| gttT_rec: V G Q G’, subst_global 0 0 (grec G) GQ — R QG — gttT R (g_rec G) G’.
Definition gtt7C G G 2 paco2 gttT bot2 G G’.

Both g_rec G and its unfolding @ map to the tree G’ . The subst_global relation ¥
handles unfolding, using 0 s for sort and global type variables as de Bruijn indices.

» Remark 9. Formalising translation in Coq follows the greatest fized point of the least fixed
point technique using the Paco library [30, 68]. We define an inductive Prop predicate
gttT , acting as a generating function. It is parametrised by a relation R with the same
signature, accumulating knowledge during coinductive foldings of gttTC . The greatest fixed
point is derived using paco2 (as long as the generating function is monotone— gttT meets

this condition as it is monotone ¥), initialised with the empty relation bot2 . The suffix 2
indicates that the generating function has arity 2: global and gtt .
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» Definition 10 (local types). ¥ Local types are inductively generated as follows.

Inductive local : Type =
I | 1_end : local

T == end | t | ptT !
1_var : mat — local
e, PU(S) T | &gicr PPL(S) T ime | B o

| 1_send : part — list(option(sort*local)) —> local
| 1_recv : part — list(option(sort*local)) —> local.

The constructor &, ., p?¢;(S;).T; denotes external choice (branching) interactions with a
set of messages towards participant p with labels ¢;, payload sorts S; and continuations T;
while @iel p!4;(S;).T; stands for internal choice (selection) and specifies a set of messages
from p with labels ¢;, payload sorts S; and continuations T;.

We derive tree structures from local types, similar to the global types (Definition 7),
except that internal nodes represent branching (§7) or selection ().

» Definition 11 (local type trees). ¥ Local type trees are coinductively generated as follows.

T = end | @ p'zz(sz)Tz | CoInductive 1tt: Type &
i€l | 1tt_end : 1tt
& p?g(s) T, | 1tt_send: part — list(option(sort*ltt)) — 1ltt
sel M=) e | 1tt_recv: part —» list(option(sort*ltt)) — 1tt.

3.2 Projection and Consumption

Projection extracts local type trees for a participant from global type trees, while consumption
evolves global type trees by consuming communication actions.

» Notation 12. We write p €, pt(G) to indicate that p appears in the global type tree G .

» Definition 13 (projection). ¥ Projection onto a participant r is the largest relation
[r: G—= T — Prop coinductively defined by the following rules.

ViEI, G; rrTi Viel, G; rrTi
[ps] [PR]
r—q:{€:(S:).Gi}ier Ir @Z_qui(si)-Ti p—r:{li(Si).Git}ier I &icr q?4:(S:).Ts
Viel, ré¢{p,aq} VjelLrept(G) G T r ¢ pt(G)
[pc] = [PE]
p—a:{li(S:).Gitier It T G |r end

Projection defines a participant’s role within a given protocol—here with a tree representation.

Clearly, participants that do not occur have no specific role in the protocol, which is what
rule [re] states. Projecting onto the sending (resp. receiving) participant at the root of a

given global type tree results in a local type tree featuring an internal (resp. external) choice
where the root is the receiving (resp. sending) participant and

branches are local type trees obtained by coinductively applying

. s § p—q & p?
projection to the branches of the initial global type tree as estab
lished by the rule [ps] (resp. [pr]). The rule [pc] states that if a 05 ZH
given global type tree begins with a communication from p to q, it pP—aq Ir & p?
can be projected onto r, with r ¢ p, q, resulting in some local type 0 ‘ ©§ \

tree T if, for all continuations, r is involved (highlighted) and their
projection onto r is defined to be T—known as plain merging.

The highlighted condition is crucial as it prevents undesirable scenarios, such as the one
depicted in the figure on the right. We develop projection in Coq as follows.
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Variant projection (R: gtt — part — 1tt — Prop): gtt — part — 1tt — Prop 4
[ ooo

| proj_cont: Vpqrxsyst,p#q — q#Tr — pF#r — isgPartsC r (gtt_send p q xs) —

Forall2 (fun u v => (u = None A v = None) V (3 s g1, u=Some(s, g A v==SomelARgr1l)xsys —

isMerge t ys —> projection R (gtt_send p q xs) r t.

Definition projectionC g r t 2 paco3 projection bot3 g r t.

241
22 For the global type tree gtt_send p q xs, the list ys contains the projections of every
23 external choice found in the list xs , as ensured by the Forall2 condition. Additionally,
24 isPartsC ¥ checks whether a participant occurs in a global type tree by verifying if it is
25 a member of the type from which the tree is extracted. This condition is the highlighted
26 case in Definition 13. The isMerge ¥ predicate indicates that the projections of the entire
27 continuation onto the participant r (distinct from p and q ) are identical and equal to
s some local type tree t . Therefore, the projection of the global tree onto r resultsin t . In
29 the rest, we use the notation G [, T to represent the proposition projectionC G p T .
250 Global types trees, evolve by consuming communication actions. This allows sessions to

»1 remain well-typed even after taking several [ steps. See Theorem 35.

2 Definition 14 (global type tree consumption). ¥ The step (consumption) relation \p EN
»3 q: G— G — Prop over global type trees, is defined using the following coinductive rules.

Viel, 3kelt=1 viel, {rs}n{p,a}=0 Vjel, {p,q} Cpt(G;)
254 [sE] [sN]

(p— q: {€:i(Ss)-Gitier) \p 4 q Gk (r —s: {€:(Si).Gi}ticr) \p 5 q(r—s:{0(S:).Gi\p 4 qtier)

25 A tree that begins with a communication from p towards q, p — q: {£;(S;).G; }ier, can

26 consume the communication p LN q according to the input label f;, provided that it
»s7  represents a valid branch. Once this communication is consumed, the tree transitions into the
s subtree Gg, as specified by the [sg] rule. The [sv] rule ensures that the communication p LN q
20 is consumed coinductively across all continuation branches of the tree r — s : {£;(S;).G; }ier,
%0 as long as all participants are distinct and both p and q are explicitly present in every branch
s (highlighted). The relation is undefined in any other case, and developed in Coq as follows.

Variant gttstep (R: gtt — gtt — part — part — nat — Prop): gtt — gtt — part — part — nat — Prop S

I 5ae
| stneqg: Vpqrsxsysn,p#q > r#s - r#p > 1r#q > s#p — sF#q —

Forall (fun u => u = None V (3 s g, u = Some(s, g) A isgPartsC p g A isgPartsC q g)) xs —

Forall2 (fun u v => (u = None A v = None) V (3 s g g’, u = Some(s, g) A v = Some(s, g’) A Rgg’pqn)) xs ys —

gttstep R (gtt_send r s xs) (gtt_send r s ys) p q n.

Definition gttstepC gl g2 p q n 2 paco5 gttstep bots gl g2 p q n.

262
263 The condition with Forall2 ensures that the relation is coinductively applied over the
%4 list of continuations in xs , producing ys, where each branch takes the intended step.
s Meanwhile, the condition with Forall ensures that participants p and q appear in every

26 branch, validated by isgPartsC. We define the predicate multiC ¥ to handle the reflexive

27 transitive closure of the gttstepC relation. We use the notation G \p = q G’ to represent

268 the proposition gttstepC G G’ p q n .

269 3.3 Subtyping

20 Subtyping refers to a relation between types that allows one type (the subtype) to be used
a1 in place of another type (the super-type) in any context without causing type errors. This
o increases the flexibility of the type system.

oz » Definition 15 (subtyping). ¥ The subtyping relation <: T — T — Prop owver local type
s trees is coinductively defined by the following rules:


https://github.com/Apiros3/smpst-sr-smer/blob/main/src/part.v?plain=1#L15-L17
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/merge.v?plain=1#L9-L12
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/step.v?plain=1#L9-L25
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L71-L74
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/local.v?plain=1#L196-L205
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viel, S;=3S; T;<T; Viel, S,=<S; T;<T,
end < end @ pli(S:).Ti < @EIUJ £;(SH). T} &zeIque(S &elp?g s).T

Intuitively, a subtype permits fewer internal choices and requires more external ones. The

symbol =< denotes subsorting, the least reflexive relation over payload sorts (e.g., nat < int).

Variant subtype (R: 1tt — 1tt — Prop): ltt — 1tt — Prop =

| sub_out : V p xs ys, wfsend subsort R xs ys —> subtype R (ltt_send p xs) (ltt_send p ys).
Definition subtypeC 11 12 £ paco2 subtype bot2 11 12

The subsort construct encodes the subsorting =< relation while wfsend ¥ ensures that
types (resp. sorts) in xs are subtypes (resp. subsort) of those in ys structurally, and
allows ys to contain trailing sort - type pairs. We use the infix symbol < to denote the

subtypeC relation and the symbol =< for the subsort relation in the rest of the paper.

3.4 Typing Rules

We introduce type systems that govern processes, and sessions. Typing rules for expressions
are folklore typ_expr ¥ thus skipped. Table 2 presents rules for processes and sessions.

» Remark 16. Processes and sessions are typed with local and global type trees rather than
types themselves, allowing greater flexibility by abstracting away challenges of recursion. A
session M is then well-typed, = M: G, if G is the tree representation of some global type G,
namely G 5 6. Apart from that types do not play a critical role in the system we formalise.

ILX: Tk, P: T I, P:T TLT
————— [TEND] ———————=[TVAR] ————————— [TREC] ; [TsuB]
', 0: end LX:TH,X:T Tk pXP: T TH,P:T
I'kse:bool I'H,Pi: T T'H,Pa: T Viel, T xz;:Sit,Pi:T;
p [TITE] [TIN]
Fp if e then Py else P2: T 'y Z cr p?li(zi).Ps: &icr P’ 20:(S:). T
Thoe:S THP:T viel, Glp,T, F,Pi:T; pt(G)C {pi|icl}
[TOUT] [TsEss]
I+, plé(e).P e ple(S Fm ierpi <Pi: G

Table 2 Typing processes and sessions

» Remark 17. We now discuss the issue with structural congruence, which arises in several
previous works on MPST [2, 50, 17, 18]. These studies adopt a congruence relation, =, based
on the axiom pX.P = P[uX.P/X] which lets a recursive process and its unfolding to be
congruent in both directions. This violates the subject reduction, as the following statement
does not hold:

Assume I' -, P : T and P = Q. Then we have I' -, Q : T.

» Example 18 (Counterexample). Let P be p?4(z).pl¢'(x).X. Then we have: F, P[uX.P/X] :
T, where T = p?¢(bool).p!¢'(bool).p?l(nat).p!¢’(nat).T. However, ¥, uX.P : T. By inverting
the typing rules defined in Table 2, it can be established that if ' - uX.P : T” for some T”,
then T” must be a supertype of some T’ where T’ = p?{(S).pl¢’(S).T’. Notably, for any sort
S, T is not a supertype of T'. Therefore, types are not preserved under folding.

Our solution is to replace the structural congruence = with a pre-congruence = where
the foldback identities are disabled by the rules in Table 1. This is solution minimal in
formalisation and already imported by some recently published work [61, 3].
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Formalising process typing rules typ_proc ¥, we maintain two contexts: ctxS for
expression-sort pairs and ctxT for process-type pairs.

Inductive typ proc: ctxS — ctxT —» process —» 1ltt —» Prop &
| tc_sub: V cs ct p t t’, typ_proc csct pt — t < t’ — wfCt’ — typ_proc cs ct p t’
| tc_rec: V cs ct p t, typ_proc cs (Some t :: ct) pt — typ_proc cs ct (p_rec p) t ...

The predicate wfC ¥ within the tc_sub constructor ensures that the local type tree t’
is extracted from a local type 1t such that 1t is guarded, and its continuations are neither
all None nor empty—well-foundedness property. We employ the notation Gs Gt - P: T
and Gs F e: S to denote the propositions typ_proc Gs Gt P T and typ_expr Gs e S. The
typing rule for sessions typ_sess ¥ is implemented as follows.

Inductive typ sess : session — gtt — Prop =
| tsess: V M G, wigC G — (V pt, isgPartsC pt G —> InT pt M) —> NoDup (flattenT M) —»
ForallT (fun p P => 3 T, G |p T A nil nil - P: T) M — typ_sess M G.

The predicate ForallT applies a property over participants and processes to every parallel
composition within a session. The function flattenT extracts all participants from a session
in a list, while the inT function checks if a specific participant is present in the session. A
session M is well typed by a global type tree G if for every composition p< P in M, the
type G is projectable onto p to yield a local type tree T , and the process P conforms to
T . The session M must not contain any duplicate participants ( NoDup (flattenT M) ). If a

participant appears in the global type tree G, it must also be present in the session M.

» Note 19. The weakening wfgC G ¥ in tsess guarantees the existence of a global type,

from which the tree G —typing session M —is derived using the translation in Definition 7.
The purpose of using inductive syntax alongside coinductive semantics is to lift syntactic
identity among types to a semantic notion of equivalence through translation employing
equi-recursion, thereby simplifying property proofs. A similar outcome could, of course, be
achieved by defining types directly using coinductive syntax.

We prove translation “well-behaved” by showing that a global type and its unfolding
translate to the same tree ¥. To illustrate a translation, we verify Example 8 #. Also, in the
rest, parameters in the theorem statements are universally quantified unless otherwise stated.

Lemma 20 inverts process typing rules for two cases. See inversion.v ¥ for all cases.
» Lemma 20. ¥ Given Gs Gt - P: T,

(a) If P is of the form p_recv p xs , then 3 option list ys of sort-local type tree pairs such
that (1tt_recv p ys) < T and for all processes Q in xs and sort-local type tree pairs
(s, t) in ys, we can reason that (Some s :: Gs) Gt - Q: t .

(b) If P is of the form p_send p 1 e Q, then 3 sort S and local type tree T’ such that
Gs - e: S, Gs Gt - Q: T’ , and (ltt_send p (+[1] (Some (S,T’)))) < T.

The function +[n] (called extendLis ¥ in the code) takes an instance a: A and returns
an option list of type A , where the first n elements are None , and the n " element is a .

3.5 Grafting, Balancedness and Well formedness

We introduce global type tree contexts I'g ¥, representing finite prefixes of a global type tree
G by truncating the infinite continuation at specific nodes, leaving holes at those points.


https://github.com/Apiros3/smpst-sr-smer/blob/main/src/typecheck.v?plain=1#L36-L56
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L151
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/session.v?plain=1#L39-L44
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L147
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L378-L394
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/global.v?plain=1#L427-L467
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/inversion.v
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/inversion.v?plain=1#L9-L14
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/header.v?plain=1#L88-L92
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/gttreeh.v?plain=1#L10-L12
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a
ppy— . . . . X Inductive gtth: Type =
PG = p—qQq: {61 (SZ)'FGi}ZEI ‘ [ ]7, | gtth_send: part —> part — list(option(sort*gtth)) —» gtth
| gtth_hol : nat — gtth.

» Definition 21 (Grafting). ¥ The grafting operation constructs a global type tree G by
filling all holes in an input context I'c with non-L elements of a specified option list of global
type trees [Go, ..., Gp], denoted T'g[Go,...,Gn] = G. See Figure 2 for an example.

. , P—a .
b P q c o 5
14 4 C
1 2 14 P
C 1 4
4 P 2
P G bool Go
[lo a—p

qa—p

1—‘G - P c nat FG [G07 J—v G27 G37 G47 GB] = & Zi e
Z. 54 @C ZP
Zg fz 3 4
int Gy
int [1a G3 nat
[]s nat

Figure 2 Grafting Example

bool

The grafting approach is used to inductively track finite prefixes of global type trees
through contexts, offering a way to gain insights into infinite trees. The procedure for
associating holes with global type trees for grafting purposes relies on how the holes are
identified. In the gtth declaration, we make use of naturals to identify the holes. We then

accordingly clarify a method for this association in the Coq declaration typ_gtth of grafting.

Inductive typ gtth : list (option gtt) —» gtth —» gtt —» Prop =
| gt_hol : ¥V n 1 gc, onth n 1 = Some gc — typ_gtth 1 (gtth_hol n) gc
| gt_send: V 1 p q xs ys, SList xs —
Forall2 (fun u v = (u = None A v = None) V (3 s g g’, u = Some(s, g) A v = Some(s, g’) A typ_gtth 1 g g’)) xs ys —
typ_gtth 1 (gtth_send p q xs) (gtt_send p q ys).

The gt_hol constructor indicates which element from the option list 1 is used to fill each
hole: the n*" element of 1 fills gtth_hol n, provided it is not Nome . In the gt_send
constructor, the condition SList xs ¥ ensures that the list xs contains Some continuation
context, rather than being entirely composed of None values. Furthermore, the condition
making use of Forall2 guarantees that all holes ( gtth_hol ) in the continuation list xs

are filled with gtt s from the list 1, resulting in a list of global type tree continuations ys .

The gtth declaration allows a single natural number to reference multiple holes within
a type tree context. In this case, holes are grafted with the same gtt . This design poses no
issues as gtth is used only for grafting within typ_gtth . If the list of gtt s lacks enough
information to fill even one hole, the grafting operation is undefined. Unused elements in the
list play no crucial role either. Theorems in the paper consider only those used in grafting.

The grafting aids proofs with infinite trees. One such example is the partiality of the
projection ¥: if projecting a well-formed (Definition 24) tree G onto a participant p results in
trees T1 and To, then T; = Ty, where “=" is Coq’s Leibniz equality. We omit the proof here
but emphasise that to establish this in Coq, we use the coinductive extensionality principle
(Axiom 22) to treat an isomorphism between local type trees “~” ¥ as Leibniz equality.

» Axiom 22 (coinductive extensionality). ¥ VT; and Ta, we assume Ty ~ Ty = T; = Ts.
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https://github.com/Apiros3/smpst-sr-smer/blob/main/src/gttreeh.v?plain=1#L33-L37
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/header.v?plain=1#L81-L86
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection_helper.v?plain=1#L672-L676
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» Remark 23. In Coq, local type trees can be characterised by the type lttmapA , representing
partial functions that map paths—lists of natural numbers list nat and Booleans bool —to
nodes node [16, Definition A.4]. These nodes include actions like send 1node_send , receive
lnode_recv , end 1lnode_end , and payload sorts 1lnode_s , with the Boolean flag indicating
whether to consider payload sorts or continuations in the tree.

Inductive lnode : Type &
| 1node_end : lnode
| lnode_send: part — 1lnode
| lnode_recv: part — lnode
| lnode_s : sort —» 1lnode
Inductive lttmapA: list mat — bool —» lnode —» Prop 2
| lend : lttmapA nil false lnode_end
| lcons : V p wgn 1L, lttmapA w false (lnode_send p) — In 1 L — 1lttmapA (w ++ [1]) false gn
| lcsend: V p w gk 1, lttmapA (w ++ [1]) false (lnode_send p) — lttmapA w false gk
| lcsort: V w s gk 1, lttmapA (w ++ [1]) true (lnode_s s) — lttmapA w false gk ...

We justify that Axiom 22 does not introduce unsoundness in Coq by leveraging isomorph-
isms between coinductive and function types [1]. Specifically, 1tt with the coinductive
extensionality is isomorphic to lttmapA with functional extensionality. Thus, characterising
local type trees using (1) partial functions with functional extensionality and (2) positive
coinductive types with coinductive extensionality are equivalent. Thus, Axiom 22 is sound.

» Definition 24 (Balancedness). ¥ G is balanced, if V subtree G' of G, whenever p is in
participants of G, p €g pt(G’), then Ik € N such that

1. VY paths v, of length k, from the root of G, p is involved in a node along
2. V paths v leading to an end, from the root of G', p is involved in a node along .

Balancedness is best exemplified via its negation. Figure
on the left depicts an example of an unbalanced tree G.

/ \ Observe that the path with labels ¢§ has no r.
G= P:

Well-formedness Global type tree G is well-

nat N . formed (wtgc ) if 3 global type G, where recursion is
fs & guarded and all continuations are both non-empty and

end  non-1, such that G 9, G and G is balanced.
» Note 25. In all of the following statements, global type trees are assumed to be well-formed.
Additionally, we write p €, pt(Gl) when p appears in the global type tree context G1 .
Also, balancedness is a regularity condition that ensures liveness, meaning that all sends
and receives in the protocol prescribed by a given type tree are eventually executed. For
unbalanced trees, the grafting technique described above cannot be applied; specifically,
Lemma 26 cannot be established.

» Lemma 26. ¥ If p <, pt(G), then 3 an option list L of global types and a context G1
such that typ_gtth L G1 G with p ¢ pt(Gl) . Fach element filling a hole in G1 from L
is of gtt_send p q lsg, gtt_send q p lsg or gtt_end shape, for some participant q and
option lists 1sg of sort-global type tree pairs.

The statement asserts that a global type tree can be formed by grafting a tree context,
excluding a specific participant, by a list of global type trees with particular structure.

Proof follows by induction on the length k of the paths ( gttmap ¥) within balanced global
type trees.


https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L140-L144
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L147
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/decidable.v?plain=1#L205-L210
https://github.com/Apiros3/smpst-sr-smer/blob/main/src/balanced.v?plain=1#L15-L19
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4 Proof of Non-stuck Theorem in Coq

This section presents a Coq formalisation of the non-stuck theorem for synchronous multiparty
session types, proven through subject reduction and progress. Figure 3 illustrates the
interrelations among the lemma/theorem statements discussed in § 3 and § 4.

(Lem z(sm@em 31
\

(Lem 29

Lem 32)

(Lem 37 }—{Thm 38— Thm 40)

Figure 3 Dependency Graph

(Lem 2%3}

(Lem30)  (Lem 34

» Notation 27. We write 1; to refer to onth i 1, where i is some index and 1 is a list.

» Lemma 28. ¥ Ifwe have G |, (1tt_send q 11) , G 4 (1tt_recv p 12) , (snd 11), = T,

(snd 12)n =T’ and G \p = q G’ then G’ [, T and G |q T° hold.

This statement preserves projections of global type trees under the consumption relation.
Given a well-formed tree G with projections onto p and q, where p sends to q with
continuations 1, , q receives from p with continuations 1, , and n ' elements of these
lists are T and T’ . If the communication step “p to q ”in G is consumed with the n "

continuation, the resulting projections onto p and q yield T and T’ .

» Lemma 29. ¥ Given G |, (1tt_send q 11) , G [q (1tt_recv p 12) , (snd 11), = T,

(snd 12)n =T’ , G \p = q G’ and G |, T°’ ,3 L such that &’ | L and L = T’’ .

The statement is a variation of Lemma 28 in that the final projection is not restricted to the
participants involved in the consumed communication step.

» Lemma30. ¥ Given G |, (1tt_send q 11), G [q (Ltt_recv p 12) and (11). = (s, T) ,
d a sort s’ and a local type tree T’ such that (12), = (s?, T’) .

This property ensures the “well-definedness condition” of projections: continuations do not
result in None . Specifically, for a well-formed tree G with projections onto p and q , where

p sends to q with continuations 1; and q receives from p with continuations 1, , if the

n " continuation in 1; is well-defined, then the n *® continuation in 1, is also well-defined.

» Lemma 31. ¥ Given G |, (1tt_send q 11) , G |4 (Itt_recv p 12) and G \p = q G’ ,
dsorts s, s’ and local type trees T, T’ such that (11)n = (s, T) and (12)n = (s’, T?) .

[The statement establishes “well-definedness” of projections with respect to the consumption}

To complete proofs of Lemmas 28, 29, 30, and 31, we apply Lemma 26 (w.r.t. participant
p ) and obtain the global type tree context, then proceed by induction on this context.
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https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L1313-L1324
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection.v?plain=1#L588-L593
https://github.com/Apiros3/smpst-sr-smer/blob/main/lemma/projection_helper.v?plain=1#L1879-L1884

19:14  Formalising Subject Reduction and Progress for Multiparty Session Processes

as > Lemma32. ¥ Given G [, (1tt_send q 11) , G |q (1tt_recv p 12), G \p = q G’ and
a7 for every participant-process pair s_ind u P in M, 3 local type tree T such that G |, T
as  and nil nil + P: T, we obtain that for every participant-process pair s_ind u P in M, 3
ne  local type tree T such that G’ | T and nil nil - P: T.

This statement connects projectability, consumption, and typability of global type trees.
Given a well-formed tree G, where p sends to q and q receives from p, and G types
the session M which does not contain p and q, if G transitions to a well-formed G’

[43

by consuming the action “p to q (with some arbitrary label n)”, then G’ also types

participant-process pairs in M .
420

a1 The proof proceeds by induction on the structure of M, obtaining the base case thanks to
w22 Lemma 31 and Lemma 29, while the step case follows from the induction hypothesis.

w3 » Lemma 33. » If G|, (1tt_send q 11), G [q (Att_recv p 1o) , (xs)n = (s’,T?) ,
w24 1tt_recv p xs < 1ltt_recv p 1l and 1ltt_send q (+[n] (s, T)) < 1ltt_send q 1i, then 3

ws  global type tree G’ such that G \p = q G’ .

This property derives consumption information from projectability and subtyping predicates.
For a well-formed global type tree G with projections onto p and q, where p sends to q
with continuations 1; and q receives from p with continuations 1, , if the n ' elements of
1; and 1, are supertypes of some types T, T’ (rather than being T , T’ —relaxed), then

consuming the communication “from p to q ” using the n *! continuation is well-defined.
426

a7 Inverting the second subtyping predicate and Lemma 30 reveals a sort and a local type tree.
w2 Lemma 26 provides a global type tree context, on which the proof proceeds by induction.

w » Lemma 34. ¥ If we have (Some S :: Gs) Gt - P: T and Gs F e: S then
a0 Gs Gt - (subst_expr_proc P e 0 0): T holds.

[The statement says that substituting a typed expression in a typed process is type preserving}

431

w2 The proof follows from induction on the process P .

s » Theorem 35 (subject reduction). ¥ If we have typ_sess M G and betaP M M’ then 3
s G’ such that typ_sess M’ G’ and multiC G G’ hold.

[T he statement also known as session fidelity [26, Corollary 5.23] or protocol conformance. J
435

s Proof. We start with structural induction on the predicate betaP M M’ and handle the case
a7 for r_comm here, skipping the remaining cases due to lack of space. In this case, we are given

438

(H) typ_sess (((p < p_recv q xs) ||| (g < p_send pne Q) [l M) G,
(Hn) Xxsp = Some y .

a9 with e reduces into the value e_val v, and the goal looks like

(G1) 3 G’ ,typ_sess (p + subst_expr_proc y (e_val v) 00 ||l g+ Q |Il M) &
440
(G2) multiC G G’ .
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G G
o | 1a
precvg [..y..]: T p_send pn e Q: T’
Lem 20 (a)J/ J{Len] 20 (b)
T > 1ltt_recv q [..(x0,x1)..] T’ > 1tt_send p (+[n] (s, LT))
Lem JSJSJ/ lLenx 33
G’ G’
le T = 1tt_recv q [..(s,TL?)..] la | 10 = 1tt_send p [..(s,TL)..]
lLen] 28 lLen—n 28
L2 TL

In the above diagram, we illustrate a sequence of preprocessing steps to build a goal context.
These steps involve inversion and lemma application to derive new hypotheses. Arrows
indicate applications, straight lines show projections, and double lines share endpoints.

By inverting H and Hn, we obtain the judgments p_recvq [..y..]: T,

psend pneQ: T’, nilF eval v: s, G [, T,and G |q T’ , for some sort s, and local
type trees T, T’ , where [..n..] denotes the n®™ member of a list. Lemma 20 describes
the structure of T and T’ with respect to subtyping: 1tt_recv q [..(x0,x1..)] < T and
1tt_send p (+[n] (s, LT)) < T’ , for some option list [..(x¢,x1..)] of sort-local type tree
pairs and LT of local type tree, such that (Some x¢ :: nil) nil F y: x; . These relations
show that T is of the form 1tt_recv q, and T’ is of the form 1tt_send p. Given this
structure, Lemma 33 further establishes the existence of G’ such that G \q = p G’ .

From the step into G’ and the projections of G, Lemma 31 implies that the n*™
continuations of T and T’ are (s, TL’) and (s, TL) , for some local type trees TL and
TL’> . Given this, Lemma 28 further provides that G’ |, TL> and G’ [q TL.

We apply tsess and tc_sub to (7 after substituting G’ as the existential argu-
ment. This reduces the proof to nil nil F (subst_expr_proc y (e_val v) 0 0): x; and
nil nil + Q: TL . Lemma 34 reduces the first statement to (Some x¢ :: nil) nil F y: x;
and nil F e_val v: xo . The former was established earlier, and the latter follows by
inverting 1tt_recv q [..(s,TL?)..] > 1tt_recv q [..(x0,x1)..] and applying sc_sub }¥.
The second statement follows from Lemma 32, using G ’s projection and transition to G’ .

Finally, G2, multiC G G’ , follows from G \p = q G’ . <

» Example 36. We show an application of Theorem 35 to [16, Ex. 3.17]. The code is here %.
» Lemma 37 (canonical forms for processes and sessions). (¥, ¥)

Given typ_sess M (gtt_send p q xs) , d session M’ such that unfoldP M M’ and M’
isof p+ P Illl g+ Q Il M’ or p<« P |ll g« Q form.
Given typ_sess M gtt_end J session M’ such that unfoldP M M’ and every process in

M’ is either p_inact or p_ite e Q Q° and nil nil ~ (p_ite e Q Q’): ltt_end .
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[T he statement derives canonical forms of sessions up to unfolding.

Proof. By induction on M, and unfolding recursion an appropriate number of times. |

» Theorem 38 (progress). ¥ If typ_sess M G, then 3 session M’ such that betaP M M’ |

or both unfoldP M M’ and every process in M’ is p_inact .
Proof. By a case split on G and matching with Lemma 37. |

» Definition 39 (stuck). ¥ A multiparty session M is stuck if §# M’ such that betaP M M’ |
and B M7 such that both unfoldP M M’ holds and every process in M’’ is p_inact . A

session M gets stuck ( stuckM M ) if it reduces to a stuck session.
» Theorem 40 (non-stuck). ¥ If typ_sess M G, then stuckM M — False .

Proof. Corollary of Theorems 35 and 38. <

5 Related Work and Conclusion

Castro-Perez et al. [6] introduced Zooid, a domain-specific language embedded in Coq for
certified multiparty communication. Zooid ensures mechanised soundness and completeness
through trace equivalences between the label transition systems of local and global types,
preserving properties like deadlock freedom and protocol compliance.

Tirore et al. [60] introduced a novel computable projection function, mapping global
types into local types. This function is formally verified in Coq to be sound and complete
with respect to its coinductive tree semantics. Their work focuses exclusively on projections.

Ekici and Yoshida [13] formalised a framework for asynchronous MPST in Coq, proving
that precise subtyping, as in [17, 18], is complete. The focus is on action reorderings thus
protocol optimisations in asynchronous interactions. Neither [60] nor [13] includes a process
or typing calculus, missing proofs of subject reduction, progress, and type safety.

Hinrichsen et al. [22, 19, 20] developed Actris, a tool integrating separation logics with
asynchronous session types (with subtyping), built on the Coq Iris program logic [40, 38, 37,
36]. Jacobs et al. extended Actris into LinearActris [35], incorporating linear logic to ensure
deadlock and leak freedom. Their work is limited to binary session types.

Hinrichsen et al. [21] introduced the Multris framework, combining separation logic
for verifying functional correctness with multiparty message-passing and shared-memory
concurrency. They formally proved protocol consistency within the Coq Iris environment,
drawing inspiration from the bottom-up approach to MPST in [53], which focuses on local
types. Therefore, inherent properties of global types are not proven for Multris.

Tassarotti et al. [55] developed a compiler for a functional language with binary session
types, based on a simplified version of the GV system [14], and formally verified its correctness
in Coq. Jacobs et al. [34] extended this work into MPGV which enhances linear lambda
calculus with multiparty sessions, supporting participant redirecting and dynamic thread
spawning. Their type system includes global and local types, with local types handling
linear data. Deadlock freedom is ensured by representing cyclic communication as an acyclic
graph, eliminating the need for central coordination. The proof [34, Theorem 5.7] uses
separation logic and configuration invariants to ensure preservation and progress, showing
that configurations satisfying the invariant cannot get stuck.

Tirore [59] in his PhD thesis formalises subject reduction in Coq for the multiparty session
m-calculus in [26], incorporating session initialisation and delegation. The type system uses
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channel-ezplicit global and local types, with projections derived from [60]. Channel-explicit
types further require linearity checks, ensuring global types to be projectable, therefore
making the formalisation harder to extend or integrate with other systems, as most session
type systems (including ours) use channel-implicit types. In a subsequent work, Tirore et
al. [58] extend the results of his thesis by formalising the proofs of communication safety and
safety preservation in Coq.

Brady [5] designed secure communication protocols for binary sessions in Idris, while
Thiemann et al. [57] formalised progress and preservation for binary session types in Agda.

Hirsch and Garg introduced Pirouette [23], a choreographic language with formal guaran-
tees verified in Coq. Cruz-Filipe et al. [10] formalised the theory of choreographic program-
ming in Coq. Pohjola et al. [51] presented Kalas, a compiler for a choreographic language
whose correctness has been verified within HOLA4.

Comparison. Unlike [59], our subject reduction property ensures protocol conformance
(session fidelity) [26, Corollary 5.23]. We formalise progress and non-stuckness too. In contrast
to [34], our language extends a core multiparty session calculus with key MPST features. The
type system, based on channel-implicit global and local types with coinductive projections,
guarantees: (1) deadlock freedom via a top-down approach, (2) the non-stuck theorem through
subject reduction and progress and (3) incorporates subtyping. Our formalisation is designed
to be extensible, allowing for future enhancements such as incorporating projection with full
merging, and properties like fairness and liveness (discussed below).

In Coq. Tirore [59], Castro-Perez et al. [6], and our formalisation use inductive syntax for
types and coinductive syntax for (equi-)recursive type unfoldings. In these works, projection
is defined using plain merging. While [59] and [6] model consumptions using LTS semantics,
we implement a coinductive step relation. These formalisations use paco constructs to define
coinductive relations. Jacobs et al. [34] use coinductive syntax for types and corecursion to
capture repetitive behaviour, formalised in Coq with native coinduction.

Formalising p types is challenging. One approach uses infinite unfoldings over a coinductive
tree, while another defines types directly within a coinductive framework. Coinductive
techniques aid proof mechanisation in Coq but complicate rewriting codata (Leibniz equality
is undecidable). A common solution is defining a bisimulation over coinductive structures
and assuming extensionality principles, aligning bisimilarity with Coq’s Leibniz equality.

Future Work. Our future work includes extensions to the coinductive full merging [62,
Definition 4.23] and the proof of liveness [67]. These extensions are plausible as in many
parts of the codebase, proofs will remain unaffected by changes to the merging operator.
Additionally, statements concerning projections can often be directly reused or require minor
adaptations to support the proofs needed for liveness.

> Full Merging. The proof for the coinductive full merge is largely self-contained, requiring
modifications to the proofs of Lemmas 28 and 29. Key statements as typ_after_step_1
¥ remain valid and follow by induction on the global type tree context. Adjustments are
needed, particularly for typ_after_step_3_helper ¥, where we establish subtyping instead
of strict equality. This change has minimal impact on the rest of the codebase.

> Liveness. We will introduce typing contexts—distinct from those in grafting—as
participant-local type tree pairs, linked to global type trees via projection. Their reductions,
based on transition labels, yield (potentially) infinite traces. Using LTL constructs, we say a
trace is live if every enabled reduction is eventually executed, and this always holds. We aim
to prove in Coq that if a global type tree has an associated typing context, then the context
is live. Existing proofs using projection can be adapted for reuse at the typing context level.

19:17
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