
Notes on PoPL

Apiros3

First Version : Apr 24, 2025

Last Update : Apr 24, 2025

Contents

1 Definitional Interpreter 2
1.1 Defining Fun . 2

1.1.1 Abstract Syntax . 2
1.1.2 Interpreter for Fun . 3

1.2 Memory . 7
1.3 Output . 10

2 Monads 10
2.1 Monad Laws . 10
2.2 Monads in Fun . 11

2.2.1 Memory and Output . 11
2.3 Monad of Memory in Fun . 13

2.3.1 Principal Functions . 13
2.3.2 Primitives . 15
2.3.3 Main Program . 16

2.4 Monadic Equivalence . 17
2.5 Exceptions . 17

3 Metalanguage Independent Machines 19
3.1 Defunctionalization (d17n) . 19
3.2 Continuation Passing Style . 21
3.3 CEK Machine . 23

4 Typing 24

5 Simple Domain Theory 25

6 Monads in Functional Programming 26
6.0.1 State Monad Decomposition . 26
6.0.2 Monad Morphism . 27

7 Other 27
7.1 On elab with abstract . 27

1

1 Definitional Interpreter

In this section we aim to explain the concept and fundamentals of a definitional interpreter under
various contexts.

We will base the language to be implemented to be based off the ”Fun” programming language
as specificed by the Principles of Programming Languages course at Oxford University.

1.1 Defining Fun

The first step in describing a fixed program is to specify the set of legal phrases (the concrete
syntax), then by describing in the language that interprets the program a set of trees that capture
the structure of legal phrases (the abstract syntax). For the rest of the section, we will form a
Haskell datatype that captures the structure of these legal phrases.

At the simplest level, we have a function

parse :: String → Phrase

where the String is any line of text in the concrete syntax, then produces a corresponding tree
in the abstract syntax, which we give the type Phrase.

Often the abstract syntax is much more simple than the concrete syntax, as the concrete syntax
allows for convinient abbreviations (syntactic sugars).

Basic fun does not have type-checking, so we regard the set of valid expressions to be produced
by a context free grammar, rejecting those which do not ”make sense”.

1.1.1 Abstract Syntax

The abstract syntax of a language can be expressed as a collection of mutually dependent datatype
definitions. In Fun, there is Expr for expressions, Defn for definitions, and Phrase for top level
phrases.

data Expr =

Number Integer

| Variable Ident

| Apply Expr [Expr]

| If Expr Expr Expr

| Lambda [Ident] Expr

| Let Defn Expr

Note that we can have functions with no arguemnts.
The definitions that appear after let also appear in the abstract syntax as

data Defn =

Val Ident Expr

| Rec Ident Expr

which correspond to giving variables denoted by Ident expressions in Expr.
In this way, the concrete form val x(x1, . . . , xn) e is syntactic sugar for val x =

lambda(x1, . . . , xn) e. We use empty “()” if the function has no inputs, and the constructor Rec is
for a definition that starts with a lambda (but is not enforced at the datatype level).

The top-level phrase that is typed in the prompt (or included as code in fun) is either an
expression which is to evaluated, or a definition to be added into the environment. So,

2

data Phrase =

Calculate Expr

| Define Defn

Remark 1.1.1. In the abstract syntax for fun, identifiers (Ident) are represented by strings. This
limits efficiencies, and in more optimized languages have indexing into a global list of identifiers
(and thus can avoid string comparisons).

1.1.2 Interpreter for Fun

The main component of an interpreter is a function eval which takes an abstract syntax tree with
an environment and turns it into a value of that expression. Specifically,

eval :: Expr → Env → Value

where Env is the type of environments which mapps identifiers to values, with Value representing
possible values computed by Fun programs.

At the simplest level, values are denoted by

data Value =

Function ([Value] → Value)

| IntVal Integer

| BoolVal Bool

| Nil

| Cons Value Value

and environments are just

type Env = Environment Value

Environments is just an abstract data type which maps identifiers to values of some type δ, where
in Fun we take δ = Value.

We take the standard mapping constructors

type Environment δ
empty_env :: Environment δ
find :: Environment δ → Ident → δ
define :: Environment δ → Ident → δ → Environment δ

We write find env x for the value to which x is bound in the environment env, and the interpretor
gives an error if x is not bound to any value in env.

We also write define env x v for the environment that agrees with env apart from mapping x
to v, hiding any binding of x from before. As notation, we write env⊕ (x, v) for define env x v.

For convinience, we also define

make_env :: [(Ident, δ)] → Environment δ

such that

make_env [(x1, v1), . . ., (xn, vn)] = empty_env ⊕ (x1, v1) ⊕ · · ·⊕ (xn, vn)

The function eval is one of the four main functions that makes the interpreter. The others are

apply :: Value → [Value] → Value

which applies a function to its list of arguemnts and produces the value returned by that function

3

abstract :: [Ident] → Expr → Env → Value

which forms a function value from a lambda expression

elab :: Defn → Env → Env

which elaborates a definition, producing a new environment in which the new name has been
defined.

The entire process of interpretation starts with a call

eval exp init_env

where exp is the abstract syntax tree for an expression that has been input, and init env is
the initial environment.

We can define env by pattern matching on Expr, with

eval (Number n) env = IntVal n

eval (Variable x) env = find env x

eval (If e1 e2 e3) env =

case eval e1 env of

BoolVal True → eval e2 env

BoolVal False → eval e3 env

_ → error "boolean required in conditional"

The error message helps with dealing with expressions if e1 then e2 else e3 where e1 does not
evaluate to a Boolean. In the Apply case, we need to evaluate the arguemnts first, so we do this by

eval (Apply f es) env =

apply (eval f env) (map ev es)

where ev e1 = eval e1 env

The inner call apply is simply given by

apply (Function f) args = f args

apply _ args = error "applying a non-function"

The Lambda is a way of creating an abstraction, which should evaluate to a function. We can
define this by

eval (Lambda xs e1) env = abstract xs e1 env

where abstract is a function that binds the parameters xs to the arguments args then evaluates
the function body e. That is,

abstract xs e env =

Function f

where f args = eval e (defargs env xs args)

Where defargs :: Env -> [Ident] -> [Value] -> Env is defined such that

defargs env0 [x1, . . ., xn] [v1, . . ., vn]

= env0 ⊕ (x1, v1) ⊕ · · ·⊕ (xn, vn)

where env ⊕ (x, v) = define env x v. Finally, we want to work with expressions of the form
let d in e1 (or Let d e), which can be given by extending the environment according to the
definition d, then evaluate the expression e.

That is,

4

eval (Let d e1) env = eval e1 (elab d env)

Elaborating simply extends the definition, which we can do by

elab (Val x e) env = define env x (eval e env)

elab (Rec x (Lambda xs e1)) env =

env’ where env’ = define env x (abstract xs e1 env’)

elab (Rec x _) env =

error "RHS of letrec must be a lambda"

Note the definition of env’ uses recursion on itself, where recursion is modelled by recursion in
Haskell.

Finally, we can define primitives which are definitions given in init env, for instance the
identifier “+” is bound to the function value Function plus where

plus [IntVal a, IntVal b] = IntVal (a + b)

and the Fun expression e1 + e2 has the abstract syntax

Apply (Variable "+") [e1, e2]

hence its value is obtained by looking up “+” in the environment and applying the resulting function
to the values of the two arguments.

Remark 1.1.2. Consequently, by redefining “+”, we can change our standard interpretation of
the primitive operator, as there is no distinction between primitive in the environment and those
which are overwritten.

We can apply d17n to the higher order interpreter for Fun to eliminate the use of functions in the
Value type. There are two places in which functions are created, the value of a lambda expression
is a function value abstract xs e env and each primitive is bound to a different function value
specific to a primitive. We introduce two new constructors to Value, each depending on a type that
lists all possible primtiives:

data Value =

...

| Closure [Ident] Expr Env

| Primitive Prim

data Prim =

Plus | Minus ...

deriving Show

type Env = Environment Value

Then abstract becomes a simple a simple call

abstract :: [Ident] → Expr → Env → Value

abstract xs e env = Closure xs e env

The original definition for abstract is placed as part of apply, used when the value being
applied is one of the Closure objects. If it is called on a Primitive, we depend on a function
primapply to be defined.

5

apply :: Value → [Value] → Value

apply (Closure xs e env) args =

eval e (defargs env xs args)

apply (Primitive p) args =

primapply p args

apply _ _ =

error "applying to a non-function"

Before d17n, primitive names like ‘+’ was bound in the environment to a value Function

plus where plus was a specific function of type [Value] -> Value. Instead, we bind ‘+’ to a
value Primitive Plus where Plus is a primitive that is to be dealt with specifically through the
primapply function.

We add in the initial environment:

init_env :: Env

init_env =

make_env[

primitive "+" Plus, ...

]

where

constant x v = (x, v)

primitive x p = (x, Primitive p)

and primapply:

primapply :: Prim → [Value] → Value

primapply Plus [IntVal a, IntVal b] = IntVal (a + b)

...

primapply x args =

error ("bad arguments to primitive " ++ show x ++ ": " ++ showlist

args)

Remark 1.1.3. • We have saved the environment as part of the Closure, as we care about the
environment when it is being abstracted.

• d17n can be applied to any whole program to eliminate higher order functions

• The cyclic structure for recursion becomes clear, as we are effectively making a loop in a
pointer-linked data structure:

elab (Rec x (Lambda xs e)) env =

env’ where env’ = define env x (Closure xs e env’)

Adjusting instances for Show and Eq in Haskell, we solve the first and third problems mentioned
at the start of the subsection. The third is solved as we elaborate based on Closure passing, where
before we relied on wrapping it in a Function who was defined over Haskell.

Effectively, instead of passing a higher order function, we pass a token that represents the higher
order function, and evaluate based on that information, which allows one to avoid making the main
function itself to be a higher function.

6

1.2 Memory

We add assignable variables, language sequencing, and while loops.
We have new(), which creates assignment variables, returning its address.

>>> val a = new();;

--- a = <address 1>

Then, we can set the contents of it by assignment

>>> a := 3;;

--> 3

The value of the assignment takes the expression x := E where E is the value of the expression E.
We can then retrieve it’s contents via the ! operator :

>>> !a;;

--> 3

Language sequencing will be written as e1; e2, where a while loop will be written
while e1 do e2.

Then, we can write functions like factorial imperatively :

val fac(n) =

let val k = new() in

let val r = new() in

k := n; r := 1;

while !k > 0 do

(r := !r * !k; k := !k - 1);

!r;;

In the above code, n is a ‘constant’ whose value never changes, but k and r are mutable by the
assignment construct.

We implement a memory to map vairables to contents. They support the following

type Memory α
type Location

contents :: Memory α → Location → α
update :: Memory α → Location → α → Memory α
fresh :: Memory α → (Location, Memory α)

Roughly, contents gives the content that is being stored at a location in memory. The update
gives a new memory that is the same as the previous, updated to the location and α arguments.
The function fresh creates and returns a fresh location such that if (a, m’) = fresh m, then a is
a location that is unused in m, and m’ is a copy of m modified so that the location is now regarded
as being in use. Thus if we have

let (a, m’) = fresh m in

let (b, m’’) = fresh m’ in ...

then a and b are different locations. Note that as the implementation of memory is backed by
a functional metalanguage, this imperative equivalent is indeed much slower than the functional
equivalent.

In Fun, memories store items of type Value, written

7

type Mem = Memory Value

We also redefine the evaluation function :

eval :: Expr → Env → Mem → (Value, Mem)

eval (Number n) env mem = (IntVal n, mem)

eval (Variable x) env mem = (find env x, mem)

eval (If e1 e2 e3) env mem =

let (b, mem’) = eval e1 env mem in

case b of

BoolVal True → eval e2 env mem’

BoolVal False → eval e3 env mem’

_ → error "Boolean required in conditional"

eval (Apply f es) env mem =

let (fv, mem’) = eval f env mem in

let (args, mem’’) = evalargs es env mem’ in

apply fv args mem’’

with helper functions

evalargs :: [Expr] → Env → Mem → ([Value], Mem)

evalargs [] env mem = ([], mem)

evalargs (e : es) env mem =

let (v, mem1) = eval e env mem in

let (vs, mem2) = evalargs es env mem1 in

(v : vs, mem2)

Any declaration creates a new memory state. In particular, elab should take a memory state as
an arguement and return another as part of its result, thus defining let should chain these results.
Specifically,

eval (Let d e1) env mem =

let (env’, mem1) = elab d env mem in

eval e1 env’ mem1

Then, elaboration looks like

elab :: Defn → Env → Mem → (Env, Mem)

elab (Val x e) env mem =

let (v, mem1) eval e env mem in

(define env x v, mem1)

elab (Rec x (Lambda xs e1)) env mem =

(env’, mem) where env’ = define env x (abstract xs e1 env’)

elab (Rec x _) env mem =

error "RHS of letrec must be lambda"

Abstract does not need to touch memory, as it builds a function object, which if it requires the
use of memory, will do so when it is called.

We adjust the Value type to accomodate primitives new and ‘!’ as

data Value =

...

| Addr Location

8

| Function ([Value] → Mem → (Value, Mem))

eval (Assign e1 e2) env mem =

let (v1, mem’) = eval e1 env mem in

case v1 of

Addr a →
let (v2, mem’’) = eval e2 env mem’ in

(v2, update mem’’ a v2)

_ → error "assigning to a non-variable"

The assignment returns the value of the right hand side, with the effect that the location denoted
by the left is updated to contain the same value.

Sequencing can be written like

eval (Sequence e1 e2) env mem =

let (v1, mem’) = eval e1 env mem in eval e2 env mem’

The while loop is written on the knowledge that

while e1 do e2

looks like

if e1 then (e2; while e1 do e2) else nil

with

eval (While e1 e2) env mem = f mem

where

f mem =

let (b, mem’) = eval e1 env mem in

case b of

BoolVal True → let (v, mem’’) = eval e2 env mem’ in f mem’’

BoolVal False → (Nil, mem’)

_ → error "boolean required in while loop"

Where we have chosen the program to return Nil when the while loop terminates.
We add primitives

primitive "new" (λ [] mem →
let (a, mem’) = fresh mem in (Addr a, mem’)

)

primitive "!" (λ [Addr a] mem → (contents mem a, mem))

The original primitives are adjusted such that memory passes straight through them. We adjust
the environment:

init_env :: Env

init_env =

make_env ...

where

constant x v = (x, v)

primitive x f = (x, Function (primwrap x f))

pureprim x f =

9

(x, Function (primwrap x (λ args mem → (f args, mem))))

The top level for Fun with memory is

obey :: Phrase → GloState → (String, GloState)

where GloState is the type of global states that are passed from one evaluation to next. With
memory, this is

type GloState = (Env, Mem)

Such that the memory with environment is passed between phrases. Then,

obey (Calculate exp) (env, mem) =

let (v, mem’) = eval exp env mem in

(print_value v, (env, mem’))

obey (Define def) (env, mem) =

let x = def_lhs def in

let (env’, mem’) = elab def env mem in

(print_defn env’ x, (env’, mem’))

With

main = dialog funParser obey (init_env, init_mem)

1.3 Output

We can add primitives for output such that evaluating print(v) would both yield the value and
print it on the terminal. For instance:

>>> print(4) + 5;;

4

--> 9

Then, we would have

eval :: Expr → Env → (String, Value)

In the previous case we’d pass the memory to the next evaluation, but in this case a sequence of
evaluations would result in a concatenation of the string outputs.

We have a binding for print as a primitive of the function:

print :: [Value] → (String, Value)

print [v] = (show v ++ "λn", v)

With

pureprin x f = (x, Function (primwrap x (λ args → ("", f args))))

2 Monads

2.1 Monad Laws

In the scope of Fun, a monad takes some α → M α, equipped with an operator ▷ and a function
result such that the following laws hold :

10

- (xm ▷ f) ▷ g = xm ▷ (λ x → f x ▷ g)

- (result x) ▷ f = f x

- xm ▷ result = xm

These outline associativity and identity rules.
Here, ▷ is an operator which takes the evaluated value of the left, and passes the return value

to its right. Thus,
▷ : M α → (α → M β) → M β

We can rewrite this in more succinct Haskell notation, by considering the function ∗ : (α →
Mβ) → M α → M β by ∗ f xm = xm ▷ f. Writing f∗ for shorthand, we can simplify our laws to

- g∗ · f∗ = (g∗ · f)∗

- f∗ · result = f

- result∗ = id

2.2 Monads in Fun

In Fun, Monads allow structure in being able to pass some background information without explic-
itly referring to them. In the case of Memory and Output, we can pass these informations without
explicitly writing their outputs by using ▷ to implicitly compute them being updated.

2.2.1 Memory and Output

We first note the types for eval and elab,

eval1 :: Expr → Env → Mem → (Value, Mem)

elab1 :: Defn → Env → Mem → (Env, Mem)

eval2 :: Expr → Env → (String, Value)

elab2 :: Defn → Env → (String, Env)

Using currying and higher-order types, we can reduce these to

eval :: Expr → Env → M Value

elab :: Defn → Env → M Env

where

type M1 α = Mem → (α, Mem)

type M2 α = (String, α)

Now consider some examples of the evaluation functions for the two languages.
In the ccase for numeric constants, we have

eval1 (Number n) env = (λ mem → (IntVal n, mem))

eval2 (Number n) env = ("", Intval n)

we can wrap this in a simple function such that

eval1 (Number n) env = result (IntVal n)

where

result :: α → M α
result1 x = (λ mem → (x, mem)) :: M1 Value

result2 x = ("", x) :: M2 Value

11

The result function essentially does what is considered doing nothing, when mapping to inside
the monad. In the case of FunMem, this is mapping to the same memory, while in the case of
FunOut, this is producing the empty string.

Similarly,

eval (Variable x) env = result (find env x)

Consider now a more complex example given by the conditional, where we have (omitting error
messages)

eval1 (If e1 e2 e3) env mem =

let (b, mem’) = eval1 e1 env mem in

case b of

BoolVal True → eval1 e2 env mem’

BoolVal False → eval1 e3 env mem’

eval2 (If e1 e2 e3) env =

let (out1, b) = eval2 e1 env in

let (out2, r) =

case b of

BoolVal True → eval2 e2 env

BoolVal False → eval2 e3 env in

(out1 ++ out2, r)

We can collapse this into a single operator,

eval (If e1 e2 e3) env =

eval1 e1 env ▷ (λ b →
case b of

BoolVal True → eval e2 env

BoolVal False → eval e3 env

)

where ▷ combines in sequence of calculations, passing the result of the first operand to the second.
For the first case, we note that the memory after the first evaluation is being passed, such that

xm ▷1 f =

let (x, mem’) = xm mem in f x mem’

For the second case, we simply add the string produced through the output, which we can do
by

xm ▷2 f =

let (out1, x) = xm in

let (out2, y) = f x in

(out1 ++ out2, y)

As another instance, consider

eval1 (Let d e1) env mem =

let (env’, mem’) = elab1 d env mem in

eval1 e1 env’ mem’

12

eval2 (Let d e1) env =

let (env’, out1) = elab2 d env in

let (x, out2) = eval2 e1 env’ in

(x, out1 ++ out2)

The evaluation can be viewed as a function of the form Env → M Value, which passes the new
environment into the evaluation. Thus, we can write the evaluation for let as,

eval (Let d e) env =

elab d env ▷ (λ env’ → eval e1 env’)

2.3 Monad of Memory in Fun

The monad of memeory can be written simply as

type M α = Mem → (α, Mem)

result :: α → M α
result x mem = (x, mem)

▷ :: M α → (α → M β) → M β
(xm ▷ f) mem =

let (x, mem1) = xm mem in f x mem1

2.3.1 Principal Functions

Additionally, a choice of monad usually comes with a few operations to implement specific language
features. For a memory, we have get that retrieves the value stored in a location, put that modifies
the contents of a location, and new that allocates a fresh location.

Explicitly,

get :: Location → M Value

get a mem = (contents mem a, mem)

put :: Location → Value → M ()

put a v mem = ((), update mem a v)

new :: M Location

new mem = let (a, mem’) = fresh mem in (a, mem’)

Alternatively, new = fresh. These operations are placed so that the details of the computational
model (eg exception + memory) can be implmented by only changing the inner implementation of
the above functions.

The term “Semantic Domains” refers to the types that are used in the interpreter.
The semantic domains for assignment variables can be written as

data Value =

// Original Alternatives

| Addr Location

| Function ([Value] → M Value)

13

where the existence of the output type of the function being M Value represents the fact the input
body can interact with the memory. We also fix the decision that Values are what names are bound
to in the environment, and the same domain of vlaues that can be stored in memory. That is,

type Env = Environment Value

type Mem = Memory Value

We also redefine the standard functions eval, abstract, apply, and elab.
That is,

eval :: Expr → Env → M Value

eval (Number n) env = result (IntVal n)

eval (Variable x) env = result (find env x)

eval (Apply f es) env =

eval f env ▷ (λ fv →
evalargs es env ▷ (λ args →

apply fv args

)

)

eval (lambda xs e1) env =

result (abstract xs e1 env)

eval (If e1 e2 e3) env =

eval e1 env ▷ (λ b →
case b of

BoolVal True → eval e2 env

BoolVal False → eval e3 env

_ → error "Boolean required in conditional"

)

eval (Let d e1) env =

elab d env ▷ (λ env’ → eval e1 env’)

The above is enough to define a language that is purely functional, but we can add imperative
features like sequencing and while loops by

eval (Sequence e1 e2) env =

eval e1 env ▷ (λ v → eval e2 env)

eval (While e1 e2) env = u

where

u = eval e1 env ▷ (λ v1 →
case v1 of

BoolVal True → eval e2 env ▷ (λ v2 u)

BoolVal False → result Nil

_ → error "Boolean required in while loop"

)

where we also have standard helper functions:

evalargs :: [Expr] → Env → M [Value]

evalargs [] env = result []

evalargs (e : es) env =

eval e env ▷ (λ v → evalargs es env ▷ (λ vs → result (v :: vs)))

14

Alternatively,

mapm :: (α → M β) → [α] → M [β]
mapm f [] = result []

mapm f (e : es) = f e ▷ (λ v → mapm f es ▷ (λ vs → result (v :: vs)))

evalargs xs env = mapm (λ e → eval e env) xs

The clause for While defines the meaning of loops as recursion.
Languages also have constructs that are unique to them, shared only with closely related ones.

In Fun with memory, the only such construct is assignment, which uses the put operation.

eval (Assign e1 e2) env =

eval e1 env ▷ (λ v1 →
case v1 of

Addr a →
eval e2 env ▷ (λ v2 → put a v2 ▷ (λ () → result v2))

_ → error "assigning to a non-variable"

)

Note that in the assignment e1 := e2, e1 must be an address, updated with the value of e2, and
the same value is yielded as the value of the assignment itself.

Moving to apply and abstract,

abstract :: [Ident] → Expr → Env → Value

abstract xs e env =

Function (λ args → eval e (defargs env xs args))

apply :: Value → [Value] → M Value

apply (Function f) args = f args

apply _ args = error "applying a non-function"

The type of abstract does not change, as forming a function value does not require interactions
with the memory. The type of apply does change to reflect the different type of the function that
is wrapped in Function.

The elab processes declaration, which should have similar definition in most interpreters. Elab-
orating may involve an interaction with the memory, as in val x = e, evaluation of the right side
may need to use the memory. Naturally,

elab :: Defn → Env → M Env

elab (Val x e) env =

eval e env ▷ (λ v → result (define env x v))

elab (Rec x (Lambda xs e1)) env =

result env’ where env’ = define env x (abstract xs e1 env’)

elab (Rec x _) env =

error "RHS of letrec must be a lambda"

2.3.2 Primitives

Standard primitives are shared with the purely functional language, but we also need to insert a
call to result, reflecting the fact primitives do not need to interact with the memory.

15

The primitives specific to the language with assignment variables are “!x” which fetches the
contents of the the memory cell named by x, and new(), which allocates a fresh, uninitialised cell.

We thus have

primitive "!" (λ [Addr a] → get a)

primitive "new" (λ [] → new ▷ (λ a → result (Addr a)))

The syntax allows the expression !x to be written without parenthesis. Note this is a Haskell feature
that allows lambda on a specific constructor without casing.

The initial environment is given by

init_env :: Env

init_env =

make_env [

// Usual constants + primitives

// primitives from above

]

where

constant x v = (x, v)

primitive x f = (x, Function (primwrap x f))

pureprim x f = primitive x (result · f)

2.3.3 Main Program

We give the global state and obey as follows

type GloState = (Env, Mem)

obey :: Phrase → GloState → (String, GloState)

obey (Calculate exp) (env, mem) =

let (v, mem’) = eval exp env mem in

(print_value v, (env, mem’))

obey (Define def) (env, mem) =

let x = def_lhs def in

let (env’, mem’) = elab def env mem in

(print_defn env’ x, (env’, mem’))

The main code is then given by

module FunMonad(main) where

// common imports

import Memory

infixl 1 ▷

We import Memory in order to implement assignable variables. We add in the memory monad,
principle functions (including catch-all for eval), primitives, initial environment, instance declara-
tions (of Eq and Show).

The main program based on obey completes the program :

main = dialog funParser obey (init_env, init_mem)

16

2.4 Monadic Equivalence

With pure fun, for any expression e, we expect the program

let val x = e in x

to be equivalent to e.
To prove this, first note the meaning of the constructs :

eval (Let d e1) env = elab d env ▷ (λ env’ → eval e1 env’)

eval (Variable x) env = result (find env x)

elab (Val x e) env = eval e env ▷ (λ v → result (define env x v))

Writing LHS to represent the code above, we have

eval LHS env = (vm ▷ f) ▷ g

where

vm = eval e env

f v = result (define env x v)

g env’ = result (find env’ x)

Noting this is just an expansion of eval (Let (Val x e) (Variable x)) env.
Applying the associative law, we have

(vm ▷ f) ▷ g = vm ▷ (λ v → f v ▷ g)

Now, given v and env,

f v ▷ g = result env’ ▷ g = g env’ = result (find env’ x) = result v

on the assumption that find (define env x v) x = v. Now, applying the right identity,

eval LHS env = eval e env ▷ (λ v → result v) = eval e env

2.5 Exceptions

We define a notion of “orelse”, which runs the first argument, returns it if successive, and calls
the second if it fails. For instance, this is useful when one wants to treat -1 as the error term.

Consider

val index(x, xs) =

let rec search(ys) =

if ys = nil then fail()

else if head(ys) = x then 0

else search(tail(ys)) + 1 in

search(xs) orelse -1;;

Then, index(x,xs) returns -1 if the value does not appear in the list.
We can define a monad that captures failure as follows

data M α = Ok α | Fail

We make this into a monad by defining the standard functions associated with it

result :: α → M α
result x = Ok x

17

(▷) :: M α → (α → M β) → M β
(Ok x) ▷ f = f x

Fail ▷ f = Fail

with associated operations to implement the fail() primitive and the orelse construct as
follows

failure :: M α
failure = Fail

orelse :: M α → M α → M α
orelse (Ok x) ym = Ok m

orelse Fail ym = ym

The semantic domain Value contains the same kinds of values as in pure Fun, as there are no
values introduced, just the possibility of a failing evaluation. The type used to represent functions
changes, to incorporate the monad to reflect the fact the function body may fail. So,

data Value =

// Standard values

| Function ([Value] → M Value)

The eval function then comes with a clause for the orelse construct, with the abstract syntax

data Expr = ...

| OrElse Expr Expr

Then, the evaluation for this is simply

eval (OrElse e1 e2) env =

orelse (eval e1 env) (eval e2 env)

The primitive fail is simple :

primitive "fail" (λ [] → failure)

Finally, at the top-level, we have

obey :: Phrase → Env → (String, Env)

obey (Calculate exp) env =

case (eval exp env) of

Ok v → (print_value v, env)

Fail → ("*failed*", env)

obey (Define def) env =

let x = def_lhs def in

case elab def env of

Ok env’ → (print_defn env’ x, env’)

Fail → ("*failed*", env)

Putting the parser together in the standard way.
The orelse definition is dependent on the lazy evaluation of Haskell, as we expect the second

arguemnt to not be evaluated unless the first ends in failure. For instance, the epxression

3 orelse (let rec loop(n) = loop(n+1) in loop(0))

18

should evaluate to 3 and not infinite recursion. The solution to this is to use continuations such
that the type M α becomes

type M α = (α → Answer) → (() → Answer) → Answer

for some type Answer, with the idea that xm ks kf calls the success continuation ks to signal
success and failure continuation kf if it fails.

Alternatively, we can avoid dependence on Haskell’s evaluation by making M α into a function
type :

type M α = () → Maybe α

with the standard Maybe α = Just α | Nothing. Then,
result :: α → M α
result x = (λ () → Just x)

(▷) :: M α → (α → M β) → M β
xm ▷ f =

(λ () →
case xm() of

Just x → f x ()

Nothing → Nothing

)

failure :: M α
failure = (λ () → Nothing)

orelse :: M α → M α → M α
orelse xm ym =

(λ () →
case xm() of

Ok x → Ok x

Nothing → ym ()

)

This forces arguments to be functions that are called only if their results are needed, allowing
expressions to yield an answer without evaluation.

Whether the metalanguage is lazy or not, we must have

failure ▷ f = failure

thus, orelse must be added as an expression, not a primitive, as in the evaluation for Apply

expressions, we evaluate the arguments, which means if any fail, the entire call fails. Thus, we have
no such primitive.

3 Metalanguage Independent Machines

3.1 Defunctionalization (d17n)

There are a few problems to cover with the interpreter, as many parts still rely on native features
of Haskell. These include

19

• The Fun interpreter uses higher order functions and type of values include functions from
values to values, which make no sense as a mathematical set. Specifically, we have

data Value = ... | Function ([Value] → Value) | ...

but there is no injection from [X] → X into X.

• The interpreter uses recursion to deal with the recursive syntax

• The implementation of recursive function definitions involves a recursive value definition in
Haskell (as opposed to a recursive function)

• The evaluation strategy (including laziness) is not clear.

Defunctionalization is a whole program transformation that turns higher-roder functional pro-
grams into first order ones. This can be split up into steps, although it is a single transformation.

Start with an original program

prog x ys = (map aug ys, map sqr ys)

where

aug y = x + y

sqr y = y * y

The first step is to decode the dataflow, isolating expressions that create or use or pass the
value of higher order arguemnts or results, together with a trivial function apply that unwraps
them when necessary.

For instance we can do

data Func = Func (Integer → Integer)

prog x ys = (map (Func aug) ys, map (Func sqr) ys)

where

aug y = x + y

sqr y = y * y

map :: Func → [Integer] → [Integer]

map f [] = []

map f (x : xs) = apply f x : map f x

apply :: Func → Integer → Integer

apply (Func f) x = f x

We now remove lambdas, identifying free variables, creating constructors for each lambda ex-
pression (which will be treated by the apply function) so that we have

data Func = Sqr | Aug Integer

Then, we can rewrite prog as

prog x ys =

(map (Aug x) ys, map Sqr ys)

We then adjust apply as an interpreter for the tiny language the Func datatype has become,
associating each constructor to the expression it represents. In our case, we have

20

apply :: Func → Integer → Integer

apply (Aug x) y = x + y

apply Sqr y = y * y

3.2 Continuation Passing Style

This takes a recursive program and gives it an iteratively controlled behavior. It introduces higher-
order functions, but this can be removed via d17n. In particular, we show that semantics are
independent of recursion / evaluation strategy of the metalanguage.

Example 3.2.1. Consider the factorial function defined by

fac :: Int → Int

fac n = if n = 0 then 1 else fac (n - 1) * n

The calculation grows and shrinks, as it needs to deal with unfolding until termination.
Alternatively, we can define

fac :: Int → Int

fac = faciter n 1

faciter :: Int → Int → Int

factier n f =

if n = 0 then f else factier (n-1) (n * f)

The control information space does not increase with n in this case. Such functions can be written
as a loop

f := 1

while n <> 0 do

f := n * f; n := n-1

end

And we say that the faciter function has iterative control behavior.

Definition 3.2.2. A Continuation Passing Style (CPS) takes any functional program and makes
it have iterative control behavior.

The general idea is that control context is needed for evaluating arguments and not for calling
procedures (we care about evaluation order, but after that is simply plain application). We therefore
wrap such context as an extra argument called the continuation. It is a function that takes the
result of the function being called, and from it calculates the final answer of the whole program.

Example 3.2.3. We take the above for the factorial function. Suppose the main program is

main n = show (fac n)

In particular, we have

fack :: Int → (Int → Answer) → Answer

fack n k =

if n = 0 then k 1 else fack (n - 1) (λ r → k (r * n))

The input on the continuation is the calculated value for (n − 1)!, and we multiply that by n,
passing it to the original continuation k. Taking the identity as the second argument, this should

21

represent our understanding of the normal factorial function. If this is instead replaced by a general
function show, the recursion deals with recursive functions that must be represented somehow in
space. Running, we get

fack 5 show

= fack 4 k4 where k4 r = show (r * 5)

= fack 3 ...

...

= fack 0 k0 where k0 r = k1 (r * 1)

= k0 1

= k1 1

= ...

= k4 24

= show 120

To d17n this, we can introduce datatypes as

data Cont =

Show

| Mult Int Cont

Then the apply function is

appcont :: Cont → Int → Answer

appcont Show r = r

appcont (Mult n k) r = appcont k (r * n)

Then,

fack n k =

if n = 0 then appcont k 1

else fack (n - 1) (Mult n k)

Calculating with this has no growing control context for subsequent recursive calls, but there is a
growing data structure that acts like a stack.

Example 3.2.4. Continuations allow one to control the evaluation strategy. Consider the con-
struction

let x = e1 in e2

where if e1 never terminates but is not used in e2, then the evaluation depends on the metalanguage.
By taking the expression

(λx → e2)e1

into the CPS form such that

let y = f x in g y

is replaced by
f x (λy → g y k)

then the let expression is in a form where it is independent of the evaluation strategy.

Example 3.2.5. Consider the Fibonacci function. We have

22

fibk :: Int → (Int → a) → a

fibk n k =

if n >= 2 then

fibk (n-1) (λ n’ → fibk (n-2) (λ n’’ → k (n’ + n’’)))

else k 1

Intuitively, fibk n takes a continuation k′ and passes the evaluation inside, based on the construc-
tion of the base cases. In a sense, we have fibk n k = k (fib n).

To d17n this, we do

data Cont = Fib Cont | Fib2 Int Cont | Add Int Cont | Result

apply :: Cont → Int → Int

apply (Fib k) n =

if n >= 2 then

apply (Fib (Fib2 n k)) (n-1)

else

apply k 1

apply (Fib2 n k) (n’) = apply (Fib (Apply n’ k)) (n-2)

apply (Add n k) (n’) = apply k (n + n’)

apply Result n = n

(Intuitively treat as ‘takes result of application and passes it into the continuation’)

Remark 3.2.6. d17n gives concrete data spaces to the control information space (the ‘rest of
computation’).

The evaluation space is the ‘places in which evaluations can occur’

3.3 CEK Machine

Consider the factorial function as before that we applied CPS and then applied d17n. Note first
that the recursive calls are tail-recursive (there are no further applications to the recursive calls).
The type Cont is isomorphic to the type of lists of integers (alternatively stacks).

Now consider a machine that has configurations that represent whether we are reducing an
appcont or fack as

• [k, r] means appcont k r

• ⟨x, k⟩ means fack x k

Where we treat k as a stack.
Then the rules corresponding to the reductions are

[x : k, r] → [k, x ∗ r]
⟨0, k⟩ → [k, 1]

⟨x, k⟩ → ⟨x− 1, x : k⟩ (x > 0)

The configuration [Nil, r] is terminal. We can see this as a mode of pushing and popping from a
stack, alongside arithmetic.

The CEK abstract machine is a machine that deals with the syntactic values which are either
closures or integers. That is, we have SValue is defined by

v ::= (lambda(x)e, env) | n

23

A control stack KStack is a set of ‘things to do next’ as

k ::= Show | (v(□)) : k | (□(e), env) : k

where the □ is used to represent what kind of element we are adding. The configurations are

⟨e, env, k⟩ [k, v]

The set of all such configurations are written Conf.
The translation relations are as follows:

⟨e(e′), env, k⟩ → ⟨e, env, (□(e′), env) : k⟩
⟨lambda(x)e, env, k⟩ → [k, (lambda(x)e, env)]

⟨n, env, k⟩ → [k, n]

⟨x, env, k⟩ → [k, env(x)]

[(□(e), env) : k, v] → ⟨e, env, (v(□)) : k⟩
[((lambda(x)e, env)(□)) : k, v] → ⟨e, (x, v) : env, k⟩

The ⟨⟩ talks about evaluating a certain expression. The stack keeps track of promises to be evalu-
ated, where the □ represents what is currently being evaluated. Note that when evaluating function
application, we evaluate the function body first and then the body. Once the evaluation is com-
plete, we are given a form [k, n] (or [k, f]), which based on the promise we pass onto the top layer
stack, continuing the evaluation.

4 Typing

In this section we consider giving a simple set of programs types in the usual sense. In particular,
we explore a relation R ⊆ Ctx× Expr× Type (writing Γ ⊢ e : A for (Γ, e, A) ∈ R).

First, Types are given by the grammar

A,B ::= int | (A ⇒ B)

We define typing rules as follows

Γ, xi : Ai,Γ
′ ⊢ xi : Ai Γ ⊢ n : int

n ∈ Z

Γ, x : A ⊢ e : B

Γ ⊢ lambda(x)e : A ⇒ B
Γ ⊢ e : A ⇒ B Γ ⊢ e′ : A

Γ ⊢ e(e′) : B

For each type A, define a subset JAK ⊆ Values to be

JintK := Z JA ⇒ BK := (JAK → JBK)

In a similar way, as the environment is a partial map from identifiers to values,

24

5 Simple Domain Theory

We can define an inductive set by simply taking the least set that satisfies certain rule-based
properties (constructors). Then, principle of induction says that if this is a monotonic function F ,
given any set S and F S ⊆ S, S contains at least the least fixed point.

Some things to note: - Tarski’s Fixed Point Theorem (for chain cpo) - factorial function as
example - continuity

Construction of cpos

• adding ⊥

• [X → Y]

• X × Y

25

6 Monads in Functional Programming

Definition 6.0.1. A monad, written M is a type constructor equipped with

return :: A → M a

▷ :: M a → (a → M b) → M b

such that

- (xm ▷ f) ▷ g = xm ▷ (λ x → f x ▷ g)

- (result x) ▷ f = f x

- xm ▷ result = xm

where the three rules are called the monad laws, representing associativity and identity rules.

Example 6.0.2. We give some examples of monads:

• The identity monad

M a = a

return x = x

xm ▷ f = f xm

• Maybe Monad

M a = Maybe a

return x = Just x

xm ▷ f = case xm of

Just x → f x

Nothing → Nothing

• List Monad

• Print Monad

• Memory Monad

• Continuation Monad

6.0.1 State Monad Decomposition

The state Monad over s is

M a = s → (a, s)

return x = (λ y → (x, y))

(xm ▷ f) s =

case xm s of

(x, y) → f x y

26

We can view the monad as a function from s → a× s, thus decompose it based on the compo-
nents. So, we have

S

A A× S S

π1
f

π2

ι1 ι2

Now consider expressions

read :: M s

read x = (x, x)

write :: s → M ()

write x _ = ((), x)

Now, we claim that given any m :: M a, we can decompose this as

m = read ▷ (λ x → write (m2 x) ▷ λ () → result (m1 x))

where m1 and m2 are projections onto each coordinate.
Indeed, we have

m x = (read ▷ (λ x → write (m2 x) ▷ λ () → result (m1 x))) x

= (write (m2 x) ▷ λ () → result (m1 x)) x

= result (m1 x) (m2 x)

= (m1 x, m2 x)

6.0.2 Monad Morphism

Definition 6.0.3. Given monads M and N , a monad morphism is a polymorphic function

h :: M a → N a

- h(resultM x) = (resultN x)

- h (m ▷M f) = (h m) ▷N (h · f)

Intuitively this represents

7 Other

7.1 On elab with abstract

- some sort of closure, lasyness
- how to think of let, where, how far things are captured
- Env keeps track of variables and which values they map to. This doesn’t change, unless some

‘let’ overrides the previous environment. Mem keeps track of a mapping from addresses to values,
which are mutable. Thus, environments map variables to addresses, which map to different values
instructed by Mem. Mem only changes when assignments happen.

27

	Definitional Interpreter
	Defining Fun
	Abstract Syntax
	Interpreter for Fun

	Memory
	Output

	Monads
	Monad Laws
	Monads in Fun
	Memory and Output

	Monad of Memory in Fun
	Principal Functions
	Primitives
	Main Program

	Monadic Equivalence
	Exceptions

	Metalanguage Independent Machines
	Defunctionalization (d17n)
	Continuation Passing Style
	CEK Machine

	Typing
	Simple Domain Theory
	Monads in Functional Programming
	State Monad Decomposition
	Monad Morphism

	Other
	On elab with abstract

