
”By Chain Completeness”...?
Proofs on Infinite Lists

Week 2 MT25

Tadayoshi Kamegai

Oxford Compsoc

October 23, 2025

Introduction Chains Admissible Predicates

Outline

1 Introduction

2 Chains

3 Admissible Predicates

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Motivation

In the Functional Programming course, you will / have learned how to write proofs
regarding infinite lists.
→ But... much of the background regarding this was skipped.

Aim: Give a better background of how the proof works!

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Outline

1 Introduction

2 Chains

3 Admissible Predicates

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Posets

Definition

A Poset or a Partially ordered set (P,⊑) is a base set P equipped with a binary
relation ⊑ that is reflexive, antisymmetric, transitive.

Example

• Any total order is a poset. For example, (N,≤), (Z,≤), (R,≤)

• Given a base set X , (P(X),⊆), the power set ordered by inclusion

• (N≥1, |), divisibility order

• Strings by prefix: u ⪯ v if u is a prefix of v

• DAGs by reachability

• Abstract interpretation: a ⊆ b if a is less precise than b

• For a base set X and a poset D, DX with f ≤ g ⇐⇒ ∀x .f (x) ≤ g(x)

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Chains

Definition

Given a poset (P,⊑), a chain C is a subset of P such that every element in C is
comparable (totally ordered).

Definition

The supremum of a chain C written
⊔

C is the least upper bound (lub) of C in P (if
it exists).

Definition

The bottom element written ⊥ is the least element of a poset (if it exists).

Definition

A chain-complete poset (ccpo) is a poset such that every non-empty chain has a
least upper bound.

→ Lists form a ccpo with bottom.

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Lists as a ccpo

Fix a set A of elements. Consider the poset L of partial lists over A ordered by
information content:

• ⊥ is the totally undefined list

• A finite list is below any list that has it as a prefix: x : xs ⊑ y : ys iff x ⊑ y and
xs ⊑ ys

For example,
⊥ ⊑ 0 : ⊥ ⊑ 0 : 1 : ⊥ ⊑ 0 : 1 : 2 : ⊥ ⊑ · · ·

The ⊥ acts like an unknown tail, which might terminate or go on forever.
With this chain, the supremum is just [0..].
But

nil ̸⊑ 0 : nil ̸⊑ 0 : 1 : nil ̸⊑ · · ·

because finite lists contain the information about termination.

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Functions

Definition

Given a poset (P,⊑), a function F : P → P is monotone if x ⊑ y implies that
F (x) ⊑ F (y)

Definition

A function F is Scott continuous if it is monotone and preserves least upper bound of
chains. That is, given a chain C , we have

F (
⊔
c∈C

c) =
⊔
c∈C

F (c)

Aside

This is a continuity based on a topology on posets. In the scott topology, C ⊆ P is
closed if

• C is lower: y ∈ C and x ⊑ y implies x ∈ C

• closed under directed (chain) suprema: when D ⊆ C is directed and
⊔

D exists,⊔
D ∈ C

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Functions - continued

Definition

Given a function F : P → P, x ∈ P is a fixed point if F (x) = x .

Definition

The least fixed point of F , written lfp(F) is the ⊑-least among fixed points.

Theorem (Kleene)

Given a chain complete poset P with bottom and a continuous function F : P → P,

lfp(F) =
⊔
n∈N

F n(⊥)

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Proofs on Partial Lists

If we consider partial lists that end in ⊥, there is a clear bijection with lists by sending
the bottom element to nil.
Concretely, setting S = {⊥, a1 : ⊥, a1 : a2 : ⊥, · · · | ai ∈ A} we have an order
preserving isomorphism between S and Listfin(A) by

• f : Listfin(A) → S by f ([]) = ⊥, f (a : xs) = a : f (xs)

• g : S → Listfin(A) by g(⊥) = [], g(a : xs) = a : g(xs)

So, we can prove properties about finite partial lists with a similar induction scheme to
finite lists.

Specifically, we just need

• Base: P(⊥)

• Step: for all x and xs, P(xs) =⇒ P(x : xs)

Then, for all xs ∈ S , P(xs). However, this doesn’t give any properties about total
infinite lists, as they live outside of S .
To do this, we introduce the notion of admissible predicates.

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Admissibility

Definition

A predicate P : L → {true, false} is admissible if it is closed under least upper bounds
of chains. That is, if

• x0 ⊑ x1 ⊑ · · ·
• for all n, P(xn)

implies that P(
⊔

n xn)

Intuition: if every finite approximation satisfies P, then the limit (possibly infinite) also
satisfies P.

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Proofs on Partial Lists - Continued

We give a method to prove propositions on infinite lists.

Suppose that P is an admissible predicate. Let xs be an infinite list, and write

xs := x0 : x1 : x2 : · · ·

Then define a chain C by,

⊥ ⊑ x0 : ⊥ ⊑ x0 : x1 : ⊥ ⊑ · · ·

By construction,
⊔

C = x0 : x1 : · · · = xs

As P is admissible, to prove a predicate about xs, it suffices to prove it is the case for
every element in C . As elements in C are finite partial lists, we can use the proof
scheme from before.

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Outline

1 Introduction

2 Chains

3 Admissible Predicates

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Did we just shift our problem?

Although we have a scheme to prove properties about infinite lists now, we still need
to show that P is admissible.
→ Feels like we just moved the problem backwards.

Some questions remain. . .

• What do admissible predicates look like?

• Is the proposition I want to prove admissible?

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

What does it mean to be admissible?

Recall,

Definition

A predicate P : L → {true, false} is admissible if

• for any chain x0 ⊑ x1 ⊑ · · ·
• if we can show for all n, P(xn)

implies that P(
⊔

n xn)

Some properties about lists aren’t admissible. For example,

• xs is finite

• ∃n.drop n xs = ⊥
These are examples of ‘limit-fragile’ propositions.

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Safety Properties are Admissible

A safety property say that ‘bad things never happen’. A property is safe if having all
finite prefixes of a list x lie in P implies that x ∈ P. Equivalently, if x /∈ P, there exists
a finite prefix y ⊑ x with y /∈ P (a finite counterexample).
There are many examples of safety properties on lists.
For example, where we ban certain patterns:

• No 1 ever occurs

• No two consecutive 1s

• All elements are less than 10

• We never see ”010”

Or when the proposition is prefix-invariant (bad patterns can be checked with a finite
prefix):

• At most 1 in any prefix

• Nondecreasing list of numbers

• Every 1 is immediately followed by a 0

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Scott-closed sets give admissible predicates

Recall,

Definition

C ⊆ P is scott-closed if

• C is lower: y ∈ C and x ⊑ y implies x ∈ C

• closed under directed (chain) suprema: when D ⊆ C is directed and
⊔

D exists,⊔
D ∈ C

Let C ⊆ E be Scott-closed and f : D → E be a Scott-continuous function. If we
define a property P by P(x) ⇐⇒ f (x) ∈ C then by continuity, the preimage
f −1(C) = {x | f (x) ∈ C} = {x | P(x)} is Scott-closed. Hence, to show P is
admissible, it suffices to realize P as a preimage of a closed set along a
Scott-continuous map.

To then find continuous maps f , we note that

• Composition of continuous constructors

• Composition of continuous folds

• Products

• Evaluation of definable expressions

are all Scott-continuous.
Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Positive properties are built to be closed

• When we say ‘positive’, we mean propositions built using continuous things with
∀ and ∧ but no ∃ or ∨.

• Universal quantification and conjunctions correspond to intersections of
Scott-closed sets, and the property of closedness is preserved under arbitrary
intersection.

• For example, ∀i .Pi has truth set
⋂

i CPi
, and this remains closed.

• ∃i .Pi corresponds to
⋃

i CPi
, but unions of Scott-closed sets need not be

Scott-closed.

• When we have P(xs) ⇐⇒ ∃n.drop n xs = ⊥, the basic disjunct is closed, but
the union is not closed under limits.

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Our general picture

• Lists form a ccpo with a bottom element.

• Given an admissible predicate, we can prove properties about infinite lists.

• Many properties about lists are indeed admissible.

Further. . .

• We can generalize this to other algebraic objects, not just lists (and we can
generate the inductive scheme given a suitable functor that describes it)

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

Introduction Chains Admissible Predicates

Questions?

Tadayoshi Kamegai Oxford Compsoc

”By Chain Completeness”...? Proofs on Infinite Lists

	Introduction
	Chains
	Admissible Predicates

