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Motivation

In the Functional Programming course, you will / have learned how to write proofs
regarding infinite lists.
— But... much of the background regarding this was skipped.

Aim: Give a better background of how the proof works!
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Posets

A Poset or a Partially ordered set (P,LC) is a base set P equipped with a binary
relation C that is reflexive, antisymmetric, transitive.

® Any total order is a poset. For example, (N, <), (Z, <), (R, <)

® Given a base set X, (P(X), C), the power set ordered by inclusion
(N>1, ), divisibility order

® Strings by prefix: u <X v if u is a prefix of v

® DAGs by reachability

Abstract interpretation: a C b if a is less precise than b

® For a base set X and a poset D, DX with f < g <= Vx.f(x) < g(x)
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Chains

Given a poset (P,C), a chain C is a subset of P such that every element in C is
comparable (totally ordered).

The supremum of a chain C written | | C is the least upper bound (lub) of C in P (if
it exists).

The bottom element written L is the least element of a poset (if it exists).

A chain-complete poset (ccpo) is a poset such that every non-empty chain has a
least upper bound.

— Lists form a ccpo with bottom. OXFORD-

Tadayoshi Kamegai Oxford Compsoc

Chain Completene: ? Proofs on |



Chains
[e]o]e] le]ele]ele]

Lists as a ccpo

Fix a set A of elements. Consider the poset L of partial lists over A ordered by
information content:
® | is the totally undefined list
® A finite list is below any list that has it as a prefix: x: xs C y : ys iff x C y and
xs C ys
For example,
1C0:LC0:1:1LC0:1:2:1LE---

The L acts like an unknown tail, which might terminate or go on forever.
With this chain, the supremum is just [0..].
But

nil ZO0:nilZ0:1:niliZ---

because finite lists contain the information about termination.

Tadayoshi Kamegai Oxford Compsoc

Chain Completeness”...? Proofs on Infinite Lists



Chains
0O000@0000

Functions

Given a poset (P,LC), a function F : P — P is monotone if x C y implies that
F(x) C F(y)

A function F is Scott continuous if it is monotone and preserves least upper bound of
chains. That is, given a chain C, we have

F(L] o= ] Fe)

ceC ceC

This is a continuity based on a topology on posets. In the scott topology, C C P is
closed if

® Cislower: y € C and x C y implies x € C

® closed under directed (chain) suprema: when D C C is directed and | | D exists, 0
LIDeC
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Functions - continued

Given a function F : P — P, x € P is a fixed point if F(x) = x.

The least fixed point of F, written Ifp(F) is the C-least among fixed points.

Theorem (Kleene)

Given a chain complete poset P with bottom and a continuous function F : P — P,

Ifp(F) = | | F"(1)

neN
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Proofs on Partial Lists

If we consider partial lists that end in L, there is a clear bijection with lists by sending
the bottom element to nil.
Concretely, setting S ={L,a1: Ll,a;:ax: L, ---|a € A} we have an order
preserving isomorphism between S and Listg, (A) by

® f: Listi,(A) = S by f([I) =L, f(a: xs) =a: f(xs)

* 1S — Listin(A) by g(L) = [l g(a: xs) = a: g(xs)
So, we can prove properties about finite partial lists with a similar induction scheme to
finite lists.

Specifically, we just need
® Base: P(1)
® Step: for all x and xs, P(xs) = P(x : xs)

Then, for all xs € S, P(xs). However, this doesn’t give any properties about total
infinite lists, as they live outside of S.
To do this, we introduce the notion of admissible predicates.
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Admissibility

A predicate P : L — {true, false} is admissible if it is closed under least upper bounds
of chains. That is, if

* xExE---
® for all n, P(xn)
implies that P(| |, xn)

Intuition: if every finite approximation satisfies P, then the limit (possibly infinite) also
satisfies P.
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Proofs on Partial Lists - Continued

We give a method to prove propositions on infinite lists.

Suppose that P is an admissible predicate. Let xs be an infinite list, and write
XSI=Xg:XL:Xp:1 "
Then define a chain C by,
1Ex:lCxp:xx:L1LC---
By construction, | |[C =xp:x1:--- = x5
As P is admissible, to prove a predicate about xs, it suffices to prove it is the case for

every element in C. As elements in C are finite partial lists, we can use the proof
scheme from before.
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Did we just shift our problem?

Although we have a scheme to prove properties about infinite lists now, we still need
to show that P is admissible.
— Feels like we just moved the problem backwards.

Some questions remain. . .
® What do admissible predicates look like?

® |s the proposition | want to prove admissible?
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What does it mean to be admissible?

Recall,

A predicate P : L — {true, false} is admissible if
® for any chain xo C x3 C - - -
® if we can show for all n, P(xp)

implies that P(| |, xn)

Some properties about lists aren't admissible. For example,
® xs is finite
® Jndrop nxs = L

These are examples of ‘limit-fragile’ propositions.
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Safety Properties are Admissible

A safety property say that ‘bad things never happen’. A property is safe if having all
finite prefixes of a list x lie in P implies that x € P. Equivalently, if x ¢ P, there exists
a finite prefix y C x with y ¢ P (a finite counterexample).

There are many examples of safety properties on lists.

For example, where we ban certain patterns:

® No 1 ever occurs

® No two consecutive 1s

® All elements are less than 10
® \We never see " 010"

Or when the proposition is prefix-invariant (bad patterns can be checked with a finite
prefix):

® At most 1 in any prefix
® Nondecreasing list of numbers

® Every 1 is immediately followed by a 0
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Scott-closed sets give admissible predicates

Recall,
C C P is scott-closed if
® Cislower: y € C and x C y implies x € C

® closed under directed (chain) suprema: when D C C is directed and | | D exists,
LIDeC

Let C C E be Scott-closed and f : D — E be a Scott-continuous function. If we
define a property P by P(x) <= f(x) € C then by continuity, the preimage
f~1(C) = {x| f(x) € C} = {x| P(x)} is Scott-closed. Hence, to show P is
admissible, it suffices to realize P as a preimage of a closed set along a
Scott-continuous map.

To then find continuous maps f, we note that
® Composition of continuous constructors
® Composition of continuous folds
® Products OFORD
® Evaluation of definable expressions "

are all Scott-continuous.
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Positive properties are built to be closed

® When we say ‘positive’, we mean propositions built using continuous things with
Vv and A but no 3 or V.

® Universal quantification and conjunctions correspond to intersections of
Scott-closed sets, and the property of closedness is preserved under arbitrary
intersection.

® For example, Vi.P; has truth set [); Cp,, and this remains closed.

® 3i.P; corresponds to | J; Cp,, but unions of Scott-closed sets need not be
Scott-closed.

® When we have P(xs) <= 3Jn.drop n xs = L, the basic disjunct is closed, but
the union is not closed under limits.
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Our general picture

® Lists form a ccpo with a bottom element.
® Given an admissible predicate, we can prove properties about infinite lists.

® Many properties about lists are indeed admissible.

Further. ..

® \We can generalize this to other algebraic objects, not just lists (and we can
generate the inductive scheme given a suitable functor that describes it)

shi Kamegai Oxford Compsoc

n Completeness”...? Proofs on In



Admissible Predicates
0000000e

Questions?
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