

"By Chain Completeness" ...? Proofs on Infinite Lists

Week 2 MT25

Tadayoshi Kamegai

Oxford Compsoc

October 23, 2025

Outline

① Introduction

② Chains

③ Admissible Predicates

Motivation

In the Functional Programming course, you will / have learned how to write proofs regarding infinite lists.

→ But... much of the background regarding this was skipped.

Aim: Give a better background of how the proof works!

Outline

① Introduction

② Chains

③ Admissible Predicates

Posets

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

Example

- Any total order is a poset. For example, (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq)
- Given a base set X , $(\mathcal{P}(X), \subseteq)$, the power set ordered by inclusion
- $(\mathbb{N}_{\geq 1}, |)$, divisibility order
- Strings by prefix: $u \preceq v$ if u is a prefix of v
- DAGs by reachability
- Abstract interpretation: $a \sqsubseteq b$ if a is less precise than b
- For a base set X and a poset D , D^X with $f \leq g \iff \forall x. f(x) \leq g(x)$

Chains

Definition

Given a poset (P, \sqsubseteq) , a **chain** C is a subset of P such that every element in C is comparable (totally ordered).

Definition

The **supremum** of a chain C written $\sqcup C$ is the least upper bound (lub) of C in P (if it exists).

Definition

The **bottom** element written \perp is the least element of a poset (if it exists).

Definition

A **chain-complete poset (ccpo)** is a poset such that every non-empty chain has a least upper bound.

→ Lists form a ccpo with bottom.

Lists as a ccpo

Fix a set A of elements. Consider the poset L of partial lists over A ordered by *information content*:

- \perp is the totally undefined list
- A finite list is below any list that has it as a prefix: $x : xs \sqsubseteq y : ys$ iff $x \sqsubseteq y$ and $xs \sqsubseteq ys$

For example,

$$\perp \sqsubseteq 0 : \perp \sqsubseteq 0 : 1 : \perp \sqsubseteq 0 : 1 : 2 : \perp \sqsubseteq \dots$$

The \perp acts like an unknown tail, which might terminate or go on forever.
With this chain, the supremum is just $[0..]$.

But

$$\text{nil} \not\sqsubseteq 0 : \text{nil} \not\sqsubseteq 0 : 1 : \text{nil} \not\sqsubseteq \dots$$

because finite lists contain the information about termination.

Functions

Definition

Given a poset (P, \sqsubseteq) , a function $F : P \rightarrow P$ is **monotone** if $x \sqsubseteq y$ implies that $F(x) \sqsubseteq F(y)$

Definition

A function F is **Scott continuous** if it is monotone and preserves least upper bound of chains. That is, given a chain C , we have

$$F\left(\bigsqcup_{c \in C} c\right) = \bigsqcup_{c \in C} F(c)$$

Aside

This is a continuity based on a topology on posets. In the Scott topology, $C \subseteq P$ is closed if

- C is lower: $y \in C$ and $x \sqsubseteq y$ implies $x \in C$
- closed under directed (chain) suprema: when $D \subseteq C$ is directed and $\bigsqcup D$ exists, $\bigsqcup D \in C$

Functions - continued

Definition

Given a function $F : P \rightarrow P$, $x \in P$ is a **fixed point** if $F(x) = x$.

Definition

The least fixed point of F , written $\text{lfp}(F)$ is the \sqsubseteq -least among fixed points.

Theorem (Kleene)

Given a chain complete poset P with bottom and a continuous function $F : P \rightarrow P$,

$$\text{lfp}(F) = \bigsqcup_{n \in \mathbb{N}} F^n(\perp)$$

Proofs on Partial Lists

If we consider partial lists that end in \perp , there is a clear bijection with lists by sending the bottom element to nil.

Concretely, setting $S = \{\perp, a_1 : \perp, a_1 : a_2 : \perp, \dots \mid a_i \in A\}$ we have an order preserving isomorphism between S and $\text{List}_{\text{fin}}(A)$ by

- $f : \text{List}_{\text{fin}}(A) \rightarrow S$ by $f([]) = \perp, f(a : xs) = a : f(xs)$
- $g : S \rightarrow \text{List}_{\text{fin}}(A)$ by $g(\perp) = [], g(a : xs) = a : g(xs)$

So, we can prove properties about finite partial lists with a similar induction scheme to finite lists.

Specifically, we just need

- Base: $P(\perp)$
- Step: for all x and xs , $P(xs) \implies P(x : xs)$

Then, for all $xs \in S$, $P(xs)$. However, this doesn't give any properties about total infinite lists, as they live outside of S .

To do this, we introduce the notion of admissible predicates.

Admissibility

Definition

A predicate $P : L \rightarrow \{\text{true, false}\}$ is **admissible** if it is closed under least upper bounds of chains. That is, if

- $x_0 \sqsubseteq x_1 \sqsubseteq \dots$
- for all n , $P(x_n)$

implies that $P(\bigsqcup_n x_n)$

Intuition: if every finite approximation satisfies P , then the limit (possibly infinite) also satisfies P .

Proofs on Partial Lists - Continued

We give a method to prove propositions on infinite lists.

Suppose that P is an admissible predicate. Let xs be an infinite list, and write

$$xs := x_0 : x_1 : x_2 : \dots$$

Then define a chain C by,

$$\perp \sqsubseteq x_0 : \perp \sqsubseteq x_0 : x_1 : \perp \sqsubseteq \dots$$

By construction, $\bigcup C = x_0 : x_1 : \dots = xs$

As P is admissible, to prove a predicate about xs , it suffices to prove it is the case for every element in C . As elements in C are finite partial lists, we can use the proof scheme from before.

Outline

① Introduction

② Chains

③ Admissible Predicates

Did we just shift our problem?

Although we have a scheme to prove properties about infinite lists now, we still need to show that P is admissible.

→ Feels like we just moved the problem backwards.

Some questions remain...

- What do admissible predicates look like?
- Is the proposition I want to prove admissible?

What does it mean to be admissible?

Recall,

Definition

A predicate $P : L \rightarrow \{\text{true, false}\}$ is **admissible** if

- for any chain $x_0 \sqsubseteq x_1 \sqsubseteq \dots$
- if we can show for all n , $P(x_n)$

implies that $P(\bigsqcup_n x_n)$

Some properties about lists aren't admissible. For example,

- xs is finite
- $\exists n. \text{drop } n \ xs = \perp$

These are examples of 'limit-fragile' propositions.

Safety Properties are Admissible

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

There are many examples of safety properties on lists.

For example, where we ban certain patterns:

- No 1 ever occurs
- No two consecutive 1s
- All elements are less than 10
- We never see "010"

Or when the proposition is prefix-invariant (bad patterns can be checked with a finite prefix):

- At most 1 in any prefix
- Nondecreasing list of numbers
- Every 1 is immediately followed by a 0

Scott-closed sets give admissible predicates

Recall,

Definition

$C \subseteq P$ is scott-closed if

- C is lower: $y \in C$ and $x \sqsubseteq y$ implies $x \in C$
- closed under directed (chain) suprema: when $D \subseteq C$ is directed and $\sqcup D$ exists, $\sqcup D \in C$

Let $C \subseteq E$ be Scott-closed and $f : D \rightarrow E$ be a Scott-continuous function. If we define a property P by $P(x) \iff f(x) \in C$ then by continuity, the preimage $f^{-1}(C) = \{x \mid f(x) \in C\} = \{x \mid P(x)\}$ is Scott-closed. Hence, to show P is admissible, it suffices to realize P as a preimage of a closed set along a Scott-continuous map.

To then find continuous maps f , we note that

- Composition of continuous constructors
- Composition of continuous folds
- Products
- Evaluation of definable expressions

are all Scott-continuous.

Positive properties are built to be closed

- When we say 'positive', we mean propositions built using continuous things with \forall and \wedge but no \exists or \vee .
- Universal quantification and conjunctions correspond to intersections of Scott-closed sets, and the property of closedness is preserved under arbitrary intersection.
- For example, $\forall i.P_i$ has truth set $\bigcap_i C_{P_i}$, and this remains closed.
- $\exists i.P_i$ corresponds to $\bigcup_i C_{P_i}$, but unions of Scott-closed sets need not be Scott-closed.
- When we have $P(xs) \iff \exists n.\text{drop } n \text{ xs} = \perp$, the basic disjunct is closed, but the union is not closed under limits.

Our general picture

- Lists form a ccpo with a bottom element.
- Given an admissible predicate, we can prove properties about infinite lists.
- Many properties about lists are indeed admissible.

Further...

- We can generalize this to other algebraic objects, not just lists (and we can generate the inductive scheme given a suitable functor that describes it)

Questions?