Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000000 0

Subject Reduction for Synchronous MPST in Coq

Part II: Subject Reduction Proof

November 20, 2024

1/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000000 0

Outline

@ Typesand Trees

2/27

Types and Trees Demo IV A proof sketch
0@00000000 [e]e] 0000000000000 0

Have

°* -M:G

° M5 M
Then

® 3C'suchthatk M’: G'andG = G’

3/27

Types and Trees
00@0000000

Global Types

Global types are inductively generated by the following grammar.

Inductive global: Type =
S == mnat | dint | bool | g_var : fin — global
G = end | mG | t | :g‘end + global
g_send: part — part —
p— q: {4(S)-Gi}liel list (option(sort*global)) — global
| g_rec : global — global.

4/27

Types and Trees
00@0000000

Global Types

Global types are inductively generated by the following grammar.

Inductive Type =
S == mnat | dint | bool | g_var : fin — global
G = end | mG | t | | g_end : global
| g_send: part — part —
p— q: {4(S)-Gi}liel list (option(sortglobal)) — global

| g_rec : global — global.

Global Type Trees

Clobal type trees are coinductively generated by the following grammar.

CoInductive Type =
| gtt_end : gtt
| gtt_send: part — part —
list (option(sort*gtt)) — gtt.

G == end | p—q:{l(S).Gitic

4/27

Types and Trees
000e000000

Global Types — Global Type Trees

® Recursive unfoldings are mapped to the same tree

viel, G %o

e [gtrans-send] % [gtrans-end]
p—>q: {E,’(S,’).Gf},’e, —p—q: {Z[(S,’).C,’}jey end — end

ut.G Yo
[gtrans-rec]

GlutG/] L

5/27

Types and Trees Demo IV A proof sketch
000e000000 [e]e) 0000000000000 0

Global Types — Global Type Trees

® Recursive unfoldings are mapped to the same tree

viel, G %o

e [gtrans-send] % [gtrans-end]
p—>q: {€,~(S,~),G,~},~e, —p—q: {Z,‘(S,').C,’},’e, end — end

ut.G Zoe
[gtrans-rec]

Glut.G/1] ENe

4;(bool).t

G = ptp —
HEP q{fz(nat).end

5/27

Types and Trees Demo IV A proof sketch
000e000000 [e]e) 0000000000000 0

Global Types — Global Type Trees

® Recursive unfoldings are mapped to the same tree

viel, G %o

e [gtrans-send] % [gtrans-end]
p—>q: {E,’(S,’).G,’},’el —p—q: {Z,‘(S,').C,’},’e, end — end

ut.G Zoe
[gtrans-rec]

Glut.G/1] ENe

p—q
{@1 (bool).t //% \K)C\
G =ptp—q g P
l>(nat).end — bool end
@
lo nat

5/27

Types and Trees
0000e00000

Global Types — Global Type Trees y

Inductive gttT (R : global — gtt — Prop) : global — gtt — Prop =
Y
| gttT_rec: VG Q G, R Q G° — subst_global 0 O (g_rec G) G Q — gttT R (g_rec G) G’.

Definition gttTC G G’ £ paco2 gttT bot2 G G’.

6/27

Types and Trees
00000e0000

Local Types

Local types are inductively generated by the following grammar.

Inductive local : Type =
| 1_var : fin — local
| 1_end : local
T == end | wtT [t | | 1_send: part —
@ielpwi(si)"ﬂ‘i | &’_6' p?4i(Si). list (option(sort*local)) — local
| 1_recv: part —
list (option(sort*local)) — local
| 1_rec : local — 1local.

7/27

Types and Trees
00000e0000

Local Types

Local types are inductively generated by the following grammar.

Inductive : Type =
| 1_var : fin — local
| 1_end : local
T == end | wtT [t | | 1_send: part —
@iep![i(si)"ﬂ‘i | &’_6' p?4i(Si). list (option(sort*local)) — local
| 1_recv: part —
list (option(sort*local)) — local
| 1_rec : local — 1local.

Local Type Trees

Local type trees are coinductively generated by the following grammar.

| CoInductive Type =
T = end | ®f61 p.&(S,').T,- | 1tt_end : 1tt
&ie:p?&'(si)'ﬂ | 1tt_recv: part — list (option(sort*ltt)) — 1tt

| 1tt_send: part — 1list (option(sort*ltt)) — 1tt.

7/27

Types and Trees Demo IV A proof sketch
0000008000 [e]e) 0000000000000 0

Example (Local Types — Local Type Trees)

l3(int).t

&p
/ \gg\
1
f P
bool end
#1(bool). !
T = pt. & p? 1(bool) @q {&;(bool).end N Pa nat

l>(nat).end /&3‘*’ \6;\

int ® end

=
l\‘ bool

8/27

Types and Trees
0000000e00

Viel,G [T; [oroi " Viel,G [T [oroi]
proj-sen proj-recv
r—q: {f,’(S,‘),Gf};Ey I @iel q!&(S;).T,- p—r: {Ei(Sf).G[}ig; It &iel q?&(Si).T,-
r¢ {p,qt Vielrept(G) G T) r ¢ pt(G)
= t _ 1-
p—q: {E,-(S,-).Gf};el [rT [prO] con] G ﬂ end [pm] end]

9/27

Types and Trees

0000000e00
Projection

Viel,G [T; [oroi " Viel,G [T [oroi]
proj-sen proj-recv
r—q: {4(S) Gilier [@, 9'(S) Ti p— r: {4(Si)-Gitiel [&, a76(S)-Ti
r¢ {p,qt Vielrept(G) G T r ¢ pt(G)
[proj-cont] = [proj-end]
G |rend

p—q:{(S).Gliel [T

In Coq y (Projection)
Variant projection (R: gtt — part — 1tt — Prop): gtt — part — 1ltt — Prop S

[coo

| proj_cont: Vpqrxsyst, p#q — q#r — p#r —
(isgPartsC r (gtt.send p q xs)) —

List.Forall2 (fun u v => (u = None A v = None) V (3 s g t, u = Some(s, g) A v=2=Somet ARgrt) xsys —

isMerge t ys —
projection R (gtt_send p q xs) r t.
£ paco3 projection bot3 g r t.

Definition grt

9/27

Types and Trees
0000000080

Step Relation

Viel dk el l=1{
(p —q: {&'(S,').Gi},'ey) \p £> q Cp
{rstn{p,a} =2 Viel{p.a} Cpt(G)

(r — S {é;(Si).G,-},-E,) \p i} q (I’ — S {K,-(S,-).Gi \ p i) q},E,)

[st-eq]

[st-neq]

10/27

Types and Trees
0000000080

Step Relation

Viel dk el l=1{
(p —q: {&(S,‘).Ci}i@) \p £> q Cp
{rstn{p,a} =2 Viel{p.a} Cpt(G)

(r — S {Z;(S;).G,-},-E,) \p i} q (l’ — S {K,-(S,-).Gi \ p i) q},E,)

[st-eq]

[st-neq]

In Coq y (Step Relation)

Variant gttstep (R: gtt — gtt — part — part — nat — Prop): gtt — gtt — part — part — nat — Prop E
[
| stneq: Vpqrsxsysn, p#q - r#s - r#p > r#q —> s#p — s #q —

Forall (fun u => u = None \/ (exists s g, u = Some(s, g) /\ isgPartsC p g /\ isgPartsC q g)) xs —

Forall2 (fun u v .= (u = None A v = None) V (3 s g g’, u = Some(s, g) A v = Some(s, g’) AR gg’pqn)) xsys —

gttstep R (gtt_send r s xs) (gtt_send r s ys) p q n.

Definition glg2pgn) paco5 gttstep bot5 gl g2 p q n.

10/27

Types and Trees
000000000 e

Subtyping

Viel, si<:S T, <T

&iEIU} p7€,(S,)T, < &iE’ p7£,(S,/)T,’

; [sub-out]

[sub-in]

end < end

[sub-end]

/27

Types and Trees
000000000 e

7 [sub-out] [sub-end]

@IEI pIE,(S,)T, < @IEIUJ p'f,(S,’)T, end < end

Viel, S/<:S T, <T
/ /
&iEIUJ p7€,(S,)T, < &iE’ p7£,(S,)T,

[sub-in]

InCoq ¥

ing)

Fixpoint wfrec (R1: sort — sort — Prop) (R2: 1tt — 1tt — Prop) (11 12: list (option(sort*ltt))): Prop =
match (11,12) with

| (Datatypes.None::xs, Datatypes.None::ys) = wfrec R1 R2 xs ys
| (Datatypes.Some (s’,t’)::xs, Datatypes.Some (s,t)::ys) = Rl s’ s A R2 t t’> A wfrec R1 R2 xs ys
| (Datatypes.None::xs, Datatypes.Some(s,t)::ys) = wfrec R1 R2 xs ys
| (nil,) = True
(- = False
end.
Inductive (R: 1tt — 1tt — Prop): 1tt — 1ltt — Prop 2

| sub_end: subtype R ltt_end 1ltt_end

| sub_in : V p xs ys, wfrec subsort R ys xs —> subtype R (ltt_recv p xs) (ltt_recv p ys)

| sub_out: V p xs ys, wfsend subsort R xs ys — subtype R (1tt_send p xs) (ltt_send p ys).
Definition 1 12 & paco2 subtype bot2 11 12.

/27

Types and Trees Demo IV A proof sketch
0000000000 [o) 0000000000000 0

Outline

® DemolV

12/27

Demo IV
oe

Let's ¥ now... (Subtyping is transitive)

Lemma stTrans: V 11 12 13, subtypeC 11 12 — subtypeC 12 13 — subtypeC 11 13.

13/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000000 0

Outline

© A proofsketch

14 /27

A proof sketch
0e000000000000

Balanced Global Types
G is balanced if, for every subtree G’ of G,
e ifp ept(G’), Ik € Nsuchthat

@ Forall paths v length k from the root of G, p € .
@ Forall paths from the root of G’ thatend ata leaf (end), p € ~.

15/27

Demo IV A proof sketch

Types and Trees
[e]e)

0000000000

Balanced Global Types

G is balanced if, for every subtree C’ of G,
e ifp ept(C’), Ik € Nsuchthat

@ fForall paths ~y length k from the rootof G, p € .
@ Forall paths «y from the root of G’ that end ata leaf (end), p € .

Example (Unbalanced Global Tree)

Consider the tree of the type:
G = pt.p — q: {¢(nat).t,¢'(int).q — r: {¢’(int).end}}
Thatis, atree Gsuch that G ENG

O®@000000000000

15/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0e000000000000

Example (Unbalanced Global Tree)

Consider the tree of the type:

pt.p — q: {{(nat).t,¢/(int).q — r: {¢’(int).end}} =

p—q
C
P
g nat q—r
@ in

t
l&m [/PEC

int end

15/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000000

V balanced G and p, if p € pt(C) then
® J[¢and Lsuch that

@ C="T¢[andp ¢ pt(lc)
@ Eachelementthatfillsa hole in ¢ from the list Lis of one of the following forms:
p—q:{l(S)-gtie a—p:{l(S)glies end

for some labels ¢;, sorts S;, continuations g; and participants q

16/27

A proof sketch
0008000000000 0

Process Language and Sessions

P u= pllle)P | Do p?(xi).P; | ifethenPelseP | uXP | X | O

M = paP | MM

17/27

A proof sketch
0000e000000000

Type Checking

d [tvar] MX: Thp P:T[t]
[p O:end[ten] MLX:TEp X: T M MEp uX.P: T .
r}_pPZT TgT/ ViEI, F,x;:S,-}—pP;:T; . I'}—Se:S erPZT
——————— [tsub] [tin] [tout]
I Fp P:T r Fp Ziel p?ﬁ,-(x,-).P;: &iGI p?ﬁ,(S,)T, r Fp p'é(e)P @ p?f(S)T

[Fse:bool T EpPi:T [ThEpP:T
[FpifethenPielseP,: T

[tite]

Vi € ’, Grp,T,' Fp Pi: T p‘t(G) (- {p,' | i€ !} [
"M Hielpiqpi: G

tsess]

18/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000080000000 0

Example (Aside on Proofs in with Hypothesis)

Often, we want to prove statements like:
Vn € N. P(n)

which can be rewritten as
Vn € N. H(n) — C(n)

19/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000080000000 0

Example (Aside on Proofs in with Hypothesis)

Often, we want to prove statements like:
Vn € N. P(n)

which can be rewritten as
Vn € N. H(n) — C(n)

Using induction on n, we can prove this by showing
® H(o) — C(0)
® (H(n) = C(n)) = (H(n +1) — C(n+1))

19/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000080000000 0

Example (Aside on Proofs in with Hypothesis)

Often, we want to prove statements like:
Vn € N. P(n)

which can be rewritten as
Vn € N. H(n) — C(n)

Using induction on n, we can prove this by showing
® H(0o) — C(0)
® H(n+1) — H(n)
® C(n)—=C(n+1)

19/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000080000000 0

Example (Aside on Proofs in with Hypothesis)

Often, we want to prove statements like:
Vn € N. P(n)

which can be rewritten as
Vn € N. H(n) — C(n)

Using induction on n, we can prove this by showing
® H(0) — C(0)
® H(n+1) — H(n)
® C(n) = C(n+1)

So often times we need to strengthen / weaken the statement to ensure we can deduce each of the implications,
even if the original statement is true.

19/27

Types and Trees Demo IV A proof sketch
0000000000 (e]e) 000000@0000000

IfT Fp uX.P: TthenT Fp P{uX.P/X}: T

20/27

Types and Trees Demo IV A proof sketch
0000000000 (e]e) 000000@0000000

IfT Fp uX.P: TthenT Fp P{uX.P/X}: T

Lemma

(Substitution Lemma for Process Variables) : If [, X: Ttp P: T"and T Fp Q: T, thenT Fp P{Q/X}: T/

20/27

Types and Trees

Demo IV A proof sketch
0000000000 [e]e)

O00000@0000000

IfT Fp uX.P: TthenT Fp P{uX.P/X}: T

Lemma

(Substitution Lemma for Process Variables) : If [, X: Ttp P: T"and T Fp Q: T, thenT Fp P{Q/X}: T/

InCoq ¥ (De bruijn Indices)

® Notation where terms are invariant under c-conversion

20/27

Types and Trees

Demo IV A proof sketch
0000000000 [e]e)

O00000@0000000

IfT Fp uX.P: TthenT Fp P{uX.P/X}: T

Lemma

(Substitution Lemma for Process Variables) : If [, X: Ttp P: T"and T Fp Q: T, thenT Fp P{Q/X}: T/

InCoq ¥ (De bruijn Indices)

® Notation where terms are invariant under c-conversion

® Use natural numbers that represent the number of binders in scope between occurence to its corresponding
binding rand X term

20/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 000000e0000000

Theorem
IfT Fp uX.P: TthenT Fp P{uX.P/X}: T

Lemma
(Substitution Lemma for Process Variables) : If [, X: Ttp P: T"and T Fp Q: T, thenT Fp P{Q/X}: T/

InCoq ¥ (De bruijn Indices)

® Notation where terms are invariant under c-conversion

® Use natural numbers that represent the number of binders in scope between occurence to its corresponding
binding rand X term

Example (In the context of Lambda Calculus)

® Ax.\y.x (Kcombinator)

20/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 000000e0000000

Theorem
IfT Fp uX.P: TthenT Fp P{uX.P/X}: T

Lemma
(Substitution Lemma for Process Variables) : If [, X: Ttp P: T"and T Fp Q: T, thenT Fp P{Q/X}: T/

InCoq ¥ (De bruijn Indices)

® Notation where terms are invariant under c-conversion

® Use natural numbers that represent the number of binders in scope between occurence to its corresponding
binding rand X term

Example (In the context of Lambda Calculus)

® Ax.\y.x (Kcombinator) = A(A 1)

20/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 000000e0000000

Theorem
IfT Fp uX.P: TthenT Fp P{uX.P/X}: T

Lemma
(Substitution Lemma for Process Variables) : If [, X: Ttp P: T"and T Fp Q: T, thenT Fp P{Q/X}: T/

InCoq ¥ (De bruijn Indices)

® Notation where terms are invariant under c-conversion

® Use natural numbers that represent the number of binders in scope between occurence to its corresponding
binding rand X term

Example (In the context of Lambda Calculus)

® Ax.\y.x (Kcombinator) = A(A 1)
® Ax.\y.A\z.xz (yz) (Scombinator)

20/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 000000e0000000

Theorem
IfT Fp uX.P: TthenT Fp P{uX.P/X}: T

Lemma
(Substitution Lemma for Process Variables) : If [, X: Ttp P: T"and T Fp Q: T, thenT Fp P{Q/X}: T/

InCoq ¥ (De bruijn Indices)

® Notation where terms are invariant under c-conversion

® Use natural numbers that represent the number of binders in scope between occurence to its corresponding
binding rand X term
Example (In the context of Lambda Calculus)

® Ax.\y.x (Kcombinator) = A(A 1)
® Ax.\y.A\z.xz(yz) (Scombinator) = A(A(A 2 0 (10)))

20/27

A proof sketch
0000000800000 0

Type Checking

g ftvar] (TTp),FeFpP: T .
R, ——F—F X |tvar
FoTerr 0 end ™ o N (To)n Moo e 7 Lred

I',,,I'e "p P: T T<T' VIG ’, I'p,(S;:: Fe) l_p P,‘Z T; .
= [tsub] [tin]
I'p, Fe Fp P: T I Fp ZIEI p?&.P,'Z &EEI D?E,(S,)T,

re I_S e:S rp,re '_P P: T t] l'e Fs e: bool Fp,re Fp P1Z T Fp, Fe Fp PZZ T it
ou
FooTe P pIE(E)P: @ p7E(S) T [y, Te Fo ifethenPy else Py T [tite]

21/27

A proof sketch
0000000800000 0

Type Checking

g ftvar] (T=Tp),TebkpP: T .
R, ——F—F X |tvar
FoTerr 0 end ™ o N (To)n Moo e 7 Lred

rp,re FpP: T T<T' Vi e l, I'p,(S;:: Fe) Fp P T .
= [tsub] [tin]
I'p, Fe Fp P: T I Fp ZIEI p?gi.P,'Z &iel D7E,(S,)T,

Fe l_s e:S Fp,re "p P: T [t t] l'e FS e: bool Fp,re Fp P1ZT Fp,re Fp PZZT ot
ou
[y, e Fo PI(e).P: B p7(S) T Fo Te p ifethenPrelsePy: T L]

(Substitution Lemma for Process Variables with De Bruijn Indices) : If
o (M, #(T:Tp,)),FetpP: T
® (Mo 4 Tp,), Tetp Qi T

then (Tp, 4 Tp,), Te Fp P{Q/||Tp ||} gmmy = T/

21/27

Types and Trees Demo IV A proof sketch
[e]e) 00000000e00000

0000000000

Vbalanced Gand £,ifG [, (B, _ ali(Si)-Ti.G [q &, q?¢(Sj)-Tj,and I ki € I, kj € Jsuchthatf = £, and £ = £,
then 3T and L such that

® G="g[L]

* p,a¢pt(lc)
Moreover, There is some K such that,

® VG € L,G' =p— q:{€(S) 8ok ek for some {gork for et kek

® Jk € Ksuchthat

0=y
@ s/ =5=5,

22/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e] 000000000e0000

Vbalanced Gand 4,ifG \ p 4q0C.C i P, ql4(Si).Ti,G [q S q?¢/(S]).T/,and 3 ki € I, k; € Jsuch that
{ = lyand L = {, then

® G lpTy

® Gy

® ifG[T, thenG [, T

23/27

A proof sketch
000000000 e0000

Vbalanced Gand 4,ifG\ p = q G/, G |, D, q'4i(Si).T;,G |q S q?4;(S7).T{,and ki € I, kj € Jsuch that
= fyand{ = £, then

o ¢ rp T,
® C'lqTy
e ifG| T, thenG' |, T

In Coq y (First Bullet)

Lemma :VpqlGG” LPLQSTS’ T,
wigC G —
projectionC G p (ltt_send q LP) —
onth 1 LP = Some(S, T) —
projectionC G q (ltt_recv p LQ) —
onth 1 LQ = Some(S’, T’) —
gttstepC G G’ pq 1l —
projectionC G’ p T.
Proof.

Qed.

23/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000 e000

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.

24/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000 e000

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]«

24/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000 e000

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]«

® Gl =G=p—q:{b(S)-glie
*C=g

24/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000 e000

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]«

® [l =G=p—q: {(S)-glic
°* G =g
*ChP,, ql4;(Si).Ti,whereVi € 1, g [, T

24/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000 e000

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]«

® Tc[ly=C=p—q:{l(S)glie

G =g

*ChP,, ql4;(Si).Ti,whereVi € 1, g [, T
*ClpTe

24/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000 e000

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]«

® [¢[l]=GCG=p—q: {b(Si)-g}tici
* G =g
*ChP,, ql4;(Si).Ti,whereVi € 1, g [, T
* G T,
Inductive case: [= s — 5" : {£i(Si).I'g, }ier, {s,s'} N {p,q} = @

24/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000 e000

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]k

® [¢[l]=GCG=p—q: {b(Si)-g}tici
*C=g
*ChP,, ql4;(Si).Ti,whereVi € 1, g [, T
*ClpTe
Inductive case: [= s — 5" : {£i(Si).I'g, }ier, {s,s'} N {p,q} = @
® Gl =G=s—5":{(S).g}ic,whereVi € I,T[L] = g

24/27

Types and Trees Demo IV A proof sketch
0000000000 [e]e) 0000000000 e000

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]k

® [¢[l]=GCG=p—q: {b(Si)-g}tici
°* G =g
*ChP,, ql4;(Si).Ti,whereVi € 1, g [, T
* G T,

Inductive case: [= s — 5" : {£i(Si).I'g, }ier, {s,s'} N {p,q} = @
® [gl] =G=s—5s":{(S)-g}ic,whereVi € I,T¢[L] = g
o G/ =s—5: {0(S).g }icr, whereg \ p 5 qg

24/27

A proof sketch

Types and Trees Demo IV
0000000000 e000

0000000000 [e]e]

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]k

® [¢[l]=GCG=p—q: {b(Si)-g}tici
°* G =g
*ChP,, ql4;(Si).Ti,whereVi € 1, g [, T
* G T,
Inductive case: [= s — 5" : {£i(Si).I'g, }ier, {s,s'} N {p,q} = @
® [gl] =G=s—5s":{(S)-g}ic,whereVi € I,T¢[L] = g
o G/ =s—5: {0(S).g }icr, whereg \ p 5 qg
O G g Py, ql4(S;).Tj, where Vi € I, g Ip P q!4(S;).TiandT; ~ Tj

24/27

A proof sketch

Types and Trees Demo IV
0000000000 e000

0000000000 [e]e]

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]k

® [¢[l]=GCG=p—q: {b(Si)-g}tici
°* G =g
*ChP,, ql4;(Si).Ti,whereVi € 1, g [, T
* G T,
Inductive case: [= s — 5" : {£i(Si).I'g, }ier, {s,s'} N {p,q} = @
® [gl] =G=s—5s":{(S)-g}ic,whereVi € I,T¢[L] = g
o G/ =s—5: {0(S).g }icr, whereg \ p 5 qg
O G g Py, ql4(S;).Tj, where Vi € I, g Ip P q!4(S;).TiandT; ~ Tj

°*Vielg T,

24/27

A proof sketch

Types and Trees Demo IV
0000000000 e000

0000000000 [e]e]

Example (Proof Sketch of first bullet)

Idea : induction on I'¢ for a corresponding L that satisfies the previous lemma.
Basecase:I'c =[]k

® [¢[l]=GCG=p—q: {b(Si)-g}tici
*C=g
*ChP,, ql4;(Si).Ti,whereVi € 1, g [, T
* G [T
Inductive case: [= s — 5" : {£i(Si).I'g, }ier, {s,s'} N {p,q} = @
® Gl =G=s—5":{(S).g}ic,whereVi € I,T[L] = g
o G =s—s":{l(Si).g tici, whereg \ p L q¢
O G g @ja ql%4(S;).T;, where Vi € 1, g; [@j@ q!4(S;).TiandT; ~ Tj
e VielglT,
° c rp Te

24/27

Types and Trees Demo IV A proof sketch
0000000000 (e]e) 00000000000 e00

If= M: Gand M —5 M/, then
e 3G’ suchthat M’: G'andG — G’

25/27

A proof sketch
0000000000080

If= M: Gand M —3 M/, then
® 3C'suchthat- M’: G'andG — G’

Session Step

jel elv
[R-COMM]
P i a%i(xi)-Pi| a<pléi(e).Q | [T Mi =5 p<aP{v/x} | a<Q| [[igMi
e | true
T-COND
p<ifethenPelseQ | [T.c,Mi =5 p<P | [[ic, Mi [)
e | false M= M M o—p M, M, = M, [RSTRUCT]
F-COND -
paifethenPelseQ | [[,c,Mi =5 p<aQ | [[ic;Mi [] Mi =5 M,

25/27

Types and Trees Demo IV A proof sketch
0000000000 (e]e) 0000000000008 0

If
°* -M:G
° M5 M
Then
e JC'suchthat- M’: G'andG = G’

26/27

A proof sketch
0000000000000 e

Thanks! & Questions?

27/27

	Types and Trees
	Demo IV
	A proof sketch

