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Theorem
Have

• ⊢ M : G
• M →⋆

β M′

Then
• ∃G′ such that⊢ M′ : G′ and G =⇒ G′
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Global Types
Global types are inductively generated by the following grammar.

S ::= nat | int | bool

G ::= end | µt.G | t |
p → q : {ℓi(Si).Gi}i∈I

Inductive global: Type ≜
| g_var : fin → global

| g_end : global

| g_send: part → part →
list (option(sort*global)) → global

| g_rec : global → global.

Global Type Trees
Global type trees are coinductively generated by the following grammar.

G ::= end | p → q : {ℓi(Si).Gi}i∈I

CoInductive gtt: Type ≜
| gtt_end : gtt

| gtt_send: part → part →
list (option(sort*gtt)) → gtt.
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Global Types→Global Type Trees

• Recursive unfoldings are mapped to the same tree

∀i ∈ I, Gi
G−→ Gi

p → q : {ℓi(Si).Gi}i∈I
G−→ p → q : {ℓi(Si).Gi}i∈I

[gtrans-send]
end

G−→ end

[gtrans-end]

µt.G G−→ G

G[µt.G/t] G−→ G
[gtrans-rec]

Example

G = µt.p → q

{
ℓ1(bool).t
ℓ2(nat).end

G−→

p → q

bool endG
G−→

...

nat

ℓP
1 ℓC

1
ℓP

2

ℓC
2
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Global Types→Global Type Trees

Inductive gttT (R : global → gtt → Prop) : global → gtt → Prop ≜
| ...

| gttT_rec: ∀ G Q G’, R Q G’ → subst_global 0 0 (g_rec G) G Q → gttT R (g_rec G) G’.

Definition gttTC G G’ ≜ paco2 gttT bot2 G G’.
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Local Types
Local types are inductively generated by the following grammar.

T ::= end | µt.T | t |

⊕i∈I
p!ℓi(Si).Ti | &i∈I

p?ℓi(Si).Ti

Inductive local : Type ≜
| l_var : fin → local

| l_end : local

| l_send: part →
list (option(sort*local)) → local

| l_recv: part →
list (option(sort*local)) → local

| l_rec : local → local.

Local Type Trees
Local type trees are coinductively generated by the following grammar.

T ::= end | ⊕i∈I
p!ℓi(Si).Ti

&i∈I
p?ℓi(Si).Ti

CoInductive ltt: Type ≜
| ltt_end : ltt

| ltt_recv: part → list (option(sort*ltt)) → ltt

| ltt_send: part → list (option(sort*ltt)) → ltt.
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Example (Local Types→ Local Type Trees)

T = µt.& p?

ℓ1(bool).⊕ q!

{
ℓ3(int).t
ℓ4(bool).end

ℓ2(nat).end

T−→

& p

bool end

⊕ q nat

int end

T
T−→

...

bool

ℓP
1

ℓC
1 ℓP

2

ℓC
2

ℓP
3

ℓC
3

ℓP
4

ℓC
4
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Projection

∀i ∈ I, Gi ↾r Ti

r → q : {ℓi(Si).Gi}i∈I ↾r⊕i∈I
q!ℓi(Si).Ti

[proj-send]
∀i ∈ I, Gi ↾r Ti

p → r : {ℓi(Si).Gi}i∈I ↾r &i∈I
q?ℓi(Si).Ti

[proj-recv]

r /∈ {p, q} ∀i ∈ I, r ∈ pt(Gi) Gi ↾r T

p → q : {ℓi(Si).Gi}i∈I ↾r T
[proj-cont]

r /∈ pt(G)
G ↾r end

[proj-end]

In Coq (Projection)

Variant projection (R: gtt → part → ltt → Prop): gtt → part → ltt → Prop ≜
| ...

| proj_cont: ∀ p q r xs ys t, p ̸= q → q ̸= r → p ̸= r →
(isgPartsC r (gtt send p q xs)) →
List.Forall2 (fun u v ⇒ (u = None ∧ v = None) ∨ (∃ s g t, u = Some(s, g) ∧ v = Some t ∧ R g r t)) xs ys →
isMerge t ys →
projection R (gtt_send p q xs) r t.

Definition projectionC g r t ≜ paco3 projection bot3 g r t.
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Step Relation

∀i ∈ I ∃k ∈ I, ℓ = ℓk(
p → q : {ℓi(Si).Gi}i∈I

)
\ p ℓ−→ q Gk

[st-eq]

{r, s} ∩ {p, q} = ∅ ∀i ∈ I, {p, q} ⊆ pt(Gi)(
r → s : {ℓi(Si).Gi}i∈I

)
\ p ℓ−→ q

(
r → s : {ℓi(Si).Gi \ p ℓ−→ q}i∈I

) [st-neq]

In Coq (Step Relation)

Variant gttstep (R: gtt → gtt → part → part → nat → Prop): gtt → gtt → part → part → nat → Prop ≜
| ...

| stneq: ∀ p q r s xs ys n, p ̸= q → r ̸= s → r ̸= p → r ̸= q → s ̸= p → s ̸= q →
Forall (fun u => u = None \/ (exists s g, u = Some(s, g) /\ isgPartsC p g /\ isgPartsC q g)) xs →
Forall2 (fun u v ⇒ (u = None ∧ v = None) ∨ (∃ s g g’, u = Some(s, g) ∧ v = Some(s, g’) ∧ R g g’ p q n)) xs ys →
gttstep R (gtt_send r s xs) (gtt_send r s ys) p q n.

Definition gttstepC g1 g2 p q n ≜ paco5 gttstep bot5 g1 g2 p q n.
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Subtyping

∀i ∈ I, Si ≤ : S′
i Ti ⩽ T′

i

⊕i∈I
p!ℓi(Si).Ti ⩽⊕i∈I∪J

p!ℓi(S′
i ).T′

i
[sub-out]

end ⩽ end
[sub-end]

∀i ∈ I, S′
i ≤ : Si Ti ⩽ T′

i

&i∈I∪J
p?ℓi(Si).Ti ⩽ &i∈I

p?ℓi(S′
i ).T′

i
[sub-in]

In Coq (Subtyping)

Fixpoint wfrec (R1: sort → sort → Prop) (R2: ltt → ltt → Prop) (l1 l2: list (option(sort*ltt))): Prop ≜
match (l1,l2) with

| (Datatypes.None::xs, Datatypes.None::ys) ⇒ wfrec R1 R2 xs ys

| (Datatypes.Some (s’,t’)::xs, Datatypes.Some (s,t)::ys) ⇒ R1 s’ s ∧ R2 t t’ ∧ wfrec R1 R2 xs ys

| (Datatypes.None::xs, Datatypes.Some(s,t)::ys) ⇒ wfrec R1 R2 xs ys

| (nil, _) ⇒ True

| _ ⇒ False

end.

Inductive subtype (R: ltt → ltt → Prop): ltt → ltt → Prop ≜
| sub_end: subtype R ltt_end ltt_end

| sub_in : ∀ p xs ys, wfrec subsort R ys xs → subtype R (ltt_recv p xs) (ltt_recv p ys)

| sub_out: ∀ p xs ys, wfsend subsort R xs ys → subtype R (ltt_send p xs) (ltt_send p ys).

Definition subtypeC l1 l2 ≜ paco2 subtype bot2 l1 l2.
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Let’s now... (Subtyping is transitive)

Lemma stTrans: ∀ l1 l2 l3, subtypeC l1 l2 → subtypeC l2 l3 → subtypeC l1 l3.
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Balanced Global Types
G is balanced if, for every subtree G’ of G,

• if p ∈ pt(G′),∃ k ∈ N such that

1 For all paths γ length k from the root of G’, p ∈ γ.
2 For all paths γ from the root of G’ that end at a leaf (end), p ∈ γ.
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• if p ∈ pt(G′),∃ k ∈ N such that

1 For all paths γ length k from the root of G’, p ∈ γ.
2 For all paths γ from the root of G’ that end at a leaf (end), p ∈ γ.

Example (Unbalanced Global Tree)
Consider the tree of the type:
G = µt.p → q : {ℓ(nat).t, ℓ′(int).q → r : {ℓ′′(int).end}}
That is, a tree G such thatG G−→G.
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Example (Unbalanced Global Tree)
Consider the tree of the type:

µt.p → q : {ℓ(nat).t, ℓ′(int).q → r : {ℓ′′(int).end}} G−→

p → q

nat q → r

G
G−→

...
int

int end

ℓP

ℓC ℓ′P
ℓ′C

ℓ′′P ℓ′′C
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Theorem
∀ balanced G and p, if p ∈ pt(G) then

• ∃ΓG and L such that

1 G = ΓG[L] and p /∈ pt(ΓG)
2 Each element that fills a hole inΓG from the list L is of one of the following forms:

p → q : {ℓi(Si).gi}i∈I q → p : {ℓi(Si).gi}i∈I end

for some labels ℓi, sorts Si, continuations gi and participants q
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Process Language and Sessions
P ::= p!ℓ(e).P |

∑
i∈I p?ℓi(xi).Pi | if e then P else P | µX.P | X | 0

M ::= p ◁ P | M | M
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Type Checking

Γ ⊢P 0 : end [tend]
Γ, X : T ⊢P X : T

[tvar]
Γ, X : T ⊢P P : T
Γ ⊢P µX.P : T

[trec]

Γ ⊢P P : T T ⩽ T′

Γ ⊢P P : T′ [tsub]
∀i ∈ I, Γ, xi : Si ⊢P Pi : Ti

Γ ⊢P
∑

i∈I p?ℓi(xi).Pi : &i∈I
p?ℓi(Si).Ti

[tin]
Γ ⊢S e : S Γ ⊢P P : T

Γ ⊢P p!ℓ(e).P : ⊕ p?ℓ(S).T
[tout]

Γ ⊢S e : bool Γ ⊢P P1 : T Γ ⊢P P2 : T
Γ ⊢P if e then P1 else P2 : T

[tite]

∀i ∈ I, G↾pi Ti ⊢P Pi : Ti pt(G) ⊆ {pi | i ∈ I}
⊢M

∏
i∈I pi ◁ Pi : G

[tsess]
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Example (Aside on Proofs in with Hypothesis)
Often, we want to prove statements like:

∀n ∈ N. P(n)

which can be rewritten as
∀n ∈ N. H(n) → C(n)
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Often, we want to prove statements like:

∀n ∈ N. P(n)

which can be rewritten as
∀n ∈ N. H(n) → C(n)

Using induction on n, we can prove this by showing
• H(0) → C(0)
• (H(n) → C(n)) → (H(n + 1) → C(n + 1))
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Example (Aside on Proofs in with Hypothesis)
Often, we want to prove statements like:

∀n ∈ N. P(n)

which can be rewritten as
∀n ∈ N. H(n) → C(n)

Using induction on n, we can prove this by showing
• H(0) → C(0)
• H(n + 1) → H(n)
• C(n) → C(n + 1)

So often times we need to strengthen / weaken the statement to ensure we can deduce each of the implications,
even if the original statement is true.
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Theorem
IfΓ ⊢P µX.P : T thenΓ ⊢P P{µX.P/X} : T

Lemma
(Substitution Lemma for Process Variables) : IfΓ, X : T ⊢P P : T′ andΓ ⊢P Q : T, thenΓ ⊢P P{Q/X} : T′

In Coq (De bruijn Indices)

• Notation where terms are invariant underα-conversion
• Use natural numbers that represent the number of binders in scope between occurence to its corresponding

bindingµ andΣ term

Example (In the context of Lambda Calculus)

• λx.λy.x (K combinator)→ λ(λ 1)
• λx.λy.λz.x z (y z) (S combinator)→ λ(λ(λ 2 0 (1 0)))

20 / 27
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Example (In the context of Lambda Calculus)

• λx.λy.x (K combinator)→ λ(λ 1)

• λx.λy.λz.x z (y z) (S combinator)→ λ(λ(λ 2 0 (1 0)))
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Type Checking

Γp, Γe ⊢P 0 : end [tend]
Γp, Γe ⊢P N : (Γp)N

[tvar]
(T :: Γp), Γe ⊢P P : T
Γp, Γe ⊢P µ.P : T

[trec]

Γp, Γe ⊢P P : T T ⩽ T′

Γp, Γe ⊢P P : T′ [tsub]
∀i ∈ I, Γp, (Si :: Γe) ⊢P Pi : Ti

Γ ⊢P
∑

i∈I p?ℓi.Pi : &i∈I
p?ℓi(Si).Ti

[tin]

Γe ⊢S e : S Γp, Γe ⊢P P : T
Γp, Γe ⊢P p!ℓ(e).P : ⊕ p?ℓ(S).T

[tout]
Γe ⊢S e : bool Γp, Γe ⊢P P1 : T Γp, Γe ⊢P P2 : T

Γp, Γe ⊢P if e then P1 else P2 : T
[tite]

Lemma
(Substitution Lemma for Process Variables with De Bruijn Indices) : If

• (Γp1 ++ (T :: Γp2)), Γe ⊢P P : T′

• (Γp1 ++ Γp2), Γe ⊢P Q{m,n} : T

then (Γp1 ++ Γp2), Γe ⊢P P{Q/ ||Γp1 ||}{m,n} : T′
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Lemma
∀ balanced G and ℓ, if G ↾p⊕i∈I

q!ℓi(Si).Ti, G ↾q &j∈J
q?ℓ′j (S′

j ).T′
j , and∃ ki ∈ I, kj ∈ J such that ℓ = ℓki and ℓ = ℓ′kj ,

then∃ΓG and L such that
• G = ΓG[L]
• p, q /∈ pt(ΓG)

Moreover, There is some K such that,
• ∀G′ ∈  L, G′ = p → q : {ℓ′′k (S′′

k ).gG′k}k∈K for some {gG′k}G′∈L k∈K

• ∃k ∈ K such that

1 ℓ = ℓ′′k
2 S′′k = Ski = S′kj
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Theorem
∀ balanced G and ℓ, if G \ p ℓ−→ q G′, G ↾p⊕i∈I

q!ℓi(Si).Ti, G ↾q &j∈J
q?ℓ′j (S′

j ).T′
j , and∃ ki ∈ I, kj ∈ J such that

ℓ = ℓki and ℓ = ℓ′kj , then

• G′ ↾p Tki

• G′ ↾q T′
kj

• if G ↾r T, then G′ ↾r T

In Coq (First Bullet)
Lemma _3_19_1_helper : ∀ p q l G G’ LP LQ S T S’ T’,

wfgC G →
projectionC G p (ltt_send q LP) →
onth l LP = Some(S, T) →
projectionC G q (ltt_recv p LQ) →
onth l LQ = Some(S’, T’) →
gttstepC G G’ p q l →
projectionC G’ p T.

Proof.

...

Qed.
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Example (Proof Sketch of first bullet)
Idea : induction onΓG for a corresponding L that satisfies the previous lemma.

Base case : ΓG = [ ]k

• ΓG[L] = G = p → q : {ℓi(Si).gi}i∈I

• G′ = gℓ

• G ↾p⊕i∈I
q!ℓi(Si).Ti, where∀i ∈ I, gi ↾p Ti

• G′ ↾p Tℓ

Inductive case : ΓG = s → s′ : {ℓi(Si).ΓGi}i∈I, {s, s′} ∩ {p, q} = ∅
• ΓG[L] = G = s → s′ : {ℓi(Si).gi}i∈I, where∀i ∈ I, ΓGi [L] = gi

• G′ = s → s′ : {ℓi(Si).g′
i }i∈I, where gi \ p ℓ−→ q g′

i

• G ↾p⊕j∈J
q!ℓj(Sj).Tj, where∀i ∈ I, gi ↾p⊕j∈J

q!ℓj(Sj).Ti
j and Tj ∼ Ti

j

• ∀i ∈ I, g′
i ↾p Ti

ℓ

• G′ ↾p Tℓ
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Theorem
If⊢ M : G andM →β M′, then

• ∃G′ such that⊢ M′ : G′ and G → G′

Session Step

j ∈ I e ↓ v

p ◁
∑

i∈I q?ℓi(xi).Pi | q ◁ p!ℓj(e).Q |
∏

i∈J Mi →β p ◁ Pj{v/xj} | q ◁ Q |
∏

i∈J Mi
[R-COMM]

e ↓ true
p ◁ if e then P else Q |

∏
i∈I Mi →β p ◁ P |

∏
i∈I Mi

[T-COND]

e ↓ false
p ◁ if e then P else Q |

∏
i∈I Mi →β p ◁ Q |

∏
i∈I Mi

[F-COND]
M′

1 ⇛ M1 M1 →β M2 M2 ⇛ M′
2

M′
1 →β M′

2
[R-STRUCT]
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Theorem
If

• ⊢ M : G
• M →⋆

β M′

Then
• ∃G′ such that⊢ M′ : G′ and G =⇒ G′
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Thanks! &Questions?
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