
Intorduction to the Rocq Programming Language
Learn to Code, Week 7 HT25

Tadayoshi Kamegai

Oxford Compsoc

March 8, 2025



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Motivation

We want to generate proofs for programs, rather than test them.
→ Provide a gurantee that it works on any input

What kind of things do we want to be able to verify?
• Write code with gurantees

→ (e.g., Prove correctness of sorting algorithms)
• Prove mathematical theorems

→ (e.g., Four Colour Theorem)
• Verify software and hardware

→ (e.g., A verified C compiler)

All of these can / have been done in Rocq!

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Quick History

1969 : Howard, William A. ”The formulae-as-types notion of construction”
• Curry-Howard Correspondence : Correspondence between proof systems and

models of computation
• (simply) propositions are types, and proofs are terms of those types

1989 : Coq’s Initial Release
• An interactive theorem prover implemented using OCaml.

• Proof is built interactively by the user
• Proof is automatically checked by the type system (CIC)

• Can trust proof is correct if one trusts the Coq Kernel
2005 : Georges Gonthier formalizes the four colour theorem in Coq.
2023 : Coq renames itself to ”The Rocq Prover”

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Getting a Rocq Environment

Find a suitable download for your device from https://coq.inria.fr/download

CoqIDE is the legacy IDE for Rocq. VSCode extensions are also avaialble.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language

https://coq.inria.fr/download


Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Goal of Today’s Talk

• Give a brief outline of the language syntax
• Outline how to write inductive proofs
• Understand the importance of design choices

What we won’t cover (but definitely worth learning)
• Proof automation
• Type Theory and Dependent Types
• General theory behind the language

λω λC

λ2 λω λPω

λ → λP

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Computation in Rocq

Example

• We can explicitly compute computable functions by using the ”Compute”
function.

Compute (2 + 3). = 5
: nat

Compute (10 - 3). = 7
: nat

Compute (andb true false). = false
: bool

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Types and Expressions

Every expression in Rocq has a type. The type system prevents runtime errors.

Example

• nat : The natural numbers
• bool : The booleans
• Prop : Propositions (for proofs)
• Set : Computable data

Coq has a builtin ”Check” function which returns the type.

Example

Check 5. 5
: nat

Check (negb false). negb false
: bool

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

If types do not match, Rocq will return an error.

Example

Check (true + 3).

The term "true" has type "bool" while it is expected to have type
"nat".

What would the types for the following be?

Rocq Code

Check (3 = 3).
Check (forall x : nat, x + 0 = x).

Key Point : Equality is not a boolean, it is a Proposition.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Functional Programming in Rocq - Functions (1)

Main Idea : We can define functions using Definition and Fixpoint.

Rocq Code

Definition name (parameter) : return_type := expression.

Definition double (n : nat) : nat := n * 2.

Compute double 4.
= 8
: nat

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Functional Programming in Rocq - Functions (2)

Main Idea : We can define functions using Definition and Fixpoint.

Rocq Code

Fixpoint name (parameter) : return_type := expression.

Fixpoint factorial (n : nat) : nat :=
match n with

| 0 ⇒ 1
| S n' ⇒ n * factorial n'

end.

Compute factorial 5.
= 120
: nat

Fixpoints need to terminate to be well-defined. There needs to be some explicit
decreasing argument, which in this case is n.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Functional Programming in Rocq - Functions (3)

Idea : We use pattern matching just like in Haskell.

Rocq Code

Definition is_true (b : bool) : bool :=
match b with

| true ⇒ true
| false ⇒ false

end.

Fixpoint is_even (n : nat) : bool :=
match n with

| 0 ⇒ true
| S m' ⇒ negb (is_even m')

end.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Functional Programming in Rocq - Constructors

Rocq Code

Inductive nat : Set :=
| 0 : nat
| S : nat → nat.

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A → list A → list A

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Interactive Theorem Proving

When writing a proof in Rocq, the IDE will give you the proof context and goal that
you are trying to prove.

A proof context is a multiset Γ of formulas, and a goal F is a formula that one tries to
derive from the context.

Rocq Code
Given a pair (Γ,F), writing Γ = {F1,F2, . . . ,Fn}, the Rocq IDE will display this as

H1 : F1
H2 : F2

Hn : Fn
______________________________________(1/1)
F

From here, we use elements of the context to constructively give an element of F. If
such a proof exists, we write Γ ⊢ F.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Natural Deduction

Rocq has a variety of builtin tactics, which we use in proofs.

Reasoning with natural deduction have corresponding tactics.

Example
Axiom Rule :

...
x : A
____________(1/1)
A

assumption. (or exact x.)

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Example
Intro → :

Γ
____________(1/1)
A → B

Γ
H : A
____________(1/1)
B

intro H. (or intros H.)

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Example
Elim → :

Γ
____________(1/1)
B

Γ
____________(1/2)
A

Γ
H : A
____________(1/2)
B

assert A as H.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Example
Elim → 2 :

Γ
H : A → B
____________(1/1)
B

Γ
H : A → B
____________(1/1)
A

apply H.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Example
Intro ∧ :

Γ
____________(1/1)
A ∧ B

Γ
____________(1/2)
A

Γ
____________(2/2)
B

split.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Example
Intro ∨ :

Γ
____________(1/1)
A ∨ B

Γ
____________(1/1)
A

or
Γ
____________(1/1)
B

left. (or right.)

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Example
Intro ∀ :

Γ
__________________(1/1)
forall (x : A), B

Γ
x : A
____________(1/1)
B

intro x.

The variable to be introduced must be free in Γ. You can alternatively just write
”intro” and Rocq will give a free name to that variable.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Example
Intro ∃ :

Γ
__________________(1/1)
exists (x : A), B

Γ
____________(1/1)
B[t/x]

exists t.

If the existential is bound in B, Rocq will again automatically rename bound variables
(in De Bruijn Indices fashion).

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Example

Γ
H : A ∨ B
__________________(1/1)
C

Γ
H : A
____________(1/2)
C

Γ
H : B
____________(2/2)
C

destruct H.

• You can do the same with conjunctions, existentials, or on elements (splits them
into constructors).

• The ”as” clause lets you put a name on hypothesis, otherwise Rocq will
automatically generate them.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Specialize Tactic

Example

Γ
t : A
H : forall (x : A), F(x)
__________________(1/1)
B

Γ
t : A
H : F(t)
____________(1/1)
B

specialize(H(t)).

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

A simple Tautology

We first illustrate proofs in Rocq with the simplest example – a tautology.

Rocq Code

Theorem truth : True.
Proof.

exact I.
Qed.

The statement says that we can always derive True.
In Rocq terms, this means we can find an element in True.
What is True?

Rocq Code

Inductive True : Prop :=
| I : True.

So the proof is straight forward. We constructively prove this by saying that I is an
element of True.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Proofs with Booleans

Rocq Code

Theorem double_negation : forall (b : bool), negb (negb b) = b.
Proof.

intros b.
destruct b.
- simpl. reflexivity.
- simpl. reflexivity.

Qed.

Tactic ”simpl” unfold definitions and simplifies them (reduces them).

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Aside on Equality

What’s equality?

Rocq Code

Inductive eq (A : Type) (x : A) : A → Prop :=
| eq_refl : x = x.

Key Idea : Proofs are equivalent to finding elements of the object, and this analogy is
consistent even for equalities.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Proofs by Induction

Rocq Code

Lemma plus_0_n : forall n : nat, 0 + n = n.
Proof.

intros n.
induction n.
- simpl. reflexivity.
- simpl. rewrite IHn. reflexivity.

Qed.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Proofs by Induction - continued

Rocq Code

Lemma plus_n_Sm : forall (n m : nat), n + S m = S (n + m).
Proof.

induction n.
- intros. simpl. reflexivity.
- intros. simpl.

specialize(IHn m). rewrite IHn.
reflexivity.

Qed.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Proofs by Induction - continued

Rocq Code

Theorem plus_comm : forall n m, n + m = m + n.
Proof.

intros.
induction m.
- simpl. apply plus_0_n.
- simpl.

specialize(plus_n_Sm n m). intros.
rewrite H. rewrite IHm. reflexivity.

Qed.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Design Choices

Design choices alter proof methods / difficulty.

Let’s revisit addition.
The original definition looks like

Rocq Code

Fixpoint add_nat (n m : nat) : nat :=
match n with

| 0 ⇒ m
| S p ⇒ S (add p m)

end.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Design Choices

Design choices alter proof methods / difficulty.

Let’s revisit addition.
Alternatively, consider the following :

Rocq Code

Fixpoint add_nat (n m : nat) : nat :=
match (n, m) with

| (0, 0) ⇒ 0
| (0, _m) ⇒ _m
| (_n, 0) ⇒ _n
| (S _n, S _m) ⇒ S (S (add_nat _n _m))

end.

This makes symmetry straightforward to prove.

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language



Introduction Basics of the Language Natural Deduction and Tactics Theorem Proving in Rocq

Questions?

Tadayoshi Kamegai Oxford Compsoc
Intorduction to the Rocq Programming Language


	Introduction
	Basics of the Language
	Natural Deduction and Tactics
	Theorem Proving in Rocq

