Intorduction to the Rocq Programming Language
Learn to Code, Week 7 HT25

Tadayoshi Kamegai

Oxford Compsoc

March 8, 2025

«0O» «Fr <

it
v
il
v

Q™



Introduction
€000

Motivation

We want to generate proofs for programs, rather than test them.
— Provide a gurantee that it works on any input

What kind of things do we want to be able to verify?

® Write code with gurantees
— (e.g., Prove correctness of sorting algorithms)

® Prove mathematical theorems
— (e.g., Four Colour Theorem)

® Verify software and hardware
— (e.g., A verified C compiler)

All of these can / have been done in Rocq!

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programm



Introduction
0000

Quick History

1969 : Howard, William A. "The formulae-as-types notion of construction”

® Curry-Howard Correspondence : Correspondence between proof systems and
models of computation

® (simply) propositions are types, and proofs are terms of those types
1989 : Coq's Initial Release

® An interactive theorem prover implemented using OCaml.

® Proof is built interactively by the user
® Proof is automatically checked by the type system (CIC)

® Can trust proof is correct if one trusts the Coq Kernel

2005 : Georges Gonthier formalizes the four colour theorem in Coq.
2023 : Coq renames itself to "The Rocq Prover”

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Program



Introduction
fe]e] Yol

Getting a Rocq Environment

Find a suitable download for your device from https://coq.inria.fr/download

CoqlDE is the legacy IDE for Rocq. VSCode extensions are also avaialble.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Program


https://coq.inria.fr/download

Introduction
000e

Goal of Today's Talk

® Give a brief outline of the language syntax
® Qutline how to write inductive proofs

® Understand the importance of design choices

What we won't cover (but definitely worth learning)
® Proof automation
® Type Theory and Dependent Types
® General theory behind the language

Aw —— AC

)\2/'T T

Aw — APw

[

A— —— AP PRFORDS

SO

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Program



Basics of the Language
9000000

Computation in Rocq

® We can explicitly compute computable functions by using the "Compute”

function.
Compute (2 + 3). =5
: nat
Compute (10 - 3). =7
¢ nat
Compute (andb true false). = false
bool

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programmi



Basics of the Language
0@00000

Types and Expressions

Every expression in Rocq has a type. The type system prevents runtime errors.

® nat : The natural numbers
® bool : The booleans
® Prop : Propositions (for proofs)

® Set : Computable data

Coq has a builtin "Check” function which returns the type.

Check 5. 5
: nat
Check (negb false). negb false
: bool D

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Program



Basics of the Language
[e]e] lelele]e]

If types do not match, Rocq will return an error.

Check (true + 3).

The term "true" has type "bool" while it is expected to have type

"nat"

What would the types for the following be?

Rocq Code b

Check (3 = 3).
Check (forall x : nat, x + 0 = x).

Key Point : Equality is not a boolean, it is a Proposition.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Basics of the Language
[e]e]e] Jelele]

Functional Programming in Rocq - Functions (1)

Main Idea : We can define functions using Definition and Fixpoint.

Rocq Code ¥

Definition name (parameter) : return_type := expression.
Definition double (n : nat) : nat :=n * 2.
Compute double 4.

=8
: nat

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Basics of the Language

0000e00

Functional Programming in Rocq - Functions (2)

Main Idea : We can define functions using Definition and Fixpoint.

Rocq Code y

Fixpoint name (parameter) : return_type := expression.

Fixpoint factorial (n : nat) : nat :=
match n with
| o =1
| Sn' = n * factorial n'
end.

Compute factorial 5.

= 120
: nat

Fixpoints need to terminate to be well-defined. There needs to be some explicit
decreasing argument, which in this case is n. % ORD SN

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Basics of the Language
0000080

Functional Programming in Rocq - Functions (3)

Idea : We use pattern matching just like in Haskell.

y

Rocq Code

Definition is_true (b : bool) : bool :=
match b with
| true = true
| false = false
end.

Fixpoint is_even (n : nat) : bool :=
match n with
| 0 = true
| Sm' = negb (is_even m')
end.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Basics of the Language

000000

Functional Programming in Rocq - Constructors

Rocq Code y

Inductive nat : Set :=
| 0O : nat
| S : nat — nat.

Inductive list (A : Type) : Type :=

| nil : list A
| cons : A — list A — 1list A

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Natural Deduction and Tactics
00000000000

Interactive Theorem Proving

When writing a proof in Rocq, the IDE will give you the proof context and goal that
you are trying to prove.

A proof context is a multiset I of formulas, and a goal F is a formula that one tries to
derive from the context.

Rocq Code b
Given a pair (I, F), writing I = {F1, F2, ..., Fo}, the Rocq IDE will display this as

1/1)

From here, we use elements of the context to constructively give an element of F. If
such a proof exists, we write ' - F.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Natural Deduction and Tactics
O@000000000

Natural Deduction

Rocq has a variety of builtin tactics, which we use in proofs.

Reasoning with natural deduction have corresponding tactics.

Axiom Rule :

assumption. (or exact x.)

Kamega Oxford Compsoc

Intorduction to the Rocq Programmin



Natural Deduction and Tactics
00@00000000

Intro — :
r r
____________ (1/1) H: A
A~»s8B (1/1)
B

intro H. (or intros H.)

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programmin



Natural Deduction and Tactics
000e0000000

Elim — :

r r

____________ (1/1) e _(1/2)

B A
r
H: A
____________ (1/2)
B

assert A as H.

ford Compsoc

Intorduction to the Rocq Programmin



Natural Deduction and Tactics
0000000000

Elim — 2 :
r r
H: A — B H: A — B
____________ (1/1) U ¢ VA )
B A
apply H.

Oxford Compsoc

Intorduction to the Rocq Programmin



Natural Deduction and Tactics
0O0000e00000

Intro A :

r r

____________ (1/1) e ___(1/2)

AANB A
r
____________ (2/2)
B

split.

ford Compsoc

Intorduction to the Rocq Programmin



Natural Deduction and Tactics
00000080000

Intro V :
r r
____________ (1/1) (/1)
AV B A
or
r
____________ (1/1)
B

left. (or right.)

ford Compsoc

Intorduction to the Rocq Programmin



Natural Deduction and Tactics
00000008000

Intro V :
r r
(1/1) x : A
forall (x : A), B (CVAD)
B

intro x.

The variable to be introduced must be free in I'. You can alternatively just write
"intro” and Rocq will give a free name to that variable.

Kamega Oxford Compsoc

Intorduction to the Rocq Programmi



Natural Deduction and Tactics
00000000800

Intro 3 :
r r
(G (/1)
exists (x : A), B B[t/x]
exists t.

If the existential is bound in B, Rocq will again automatically rename bound variables
(in De Bruijn Indices fashion).

Kamega Oxford Compsoc

Intorduction to the Rocq Programmi



Natural Deduction and Tactics
00000000080

r r
H: AVB H:A
«@/vy (1/2)
Y (¢
r
H: B
____________ (2/2)
¢

destruct H.

® You can do the same with conjunctions, existentials, or on elements (splits them
into constructors).
® The "as” clause lets you put a name on hypothesis, otherwise Rocq will
automatically generate them. ROFPSa

Tadayoshi Kamegai Oxford Compsoc

n to the Rocq Programm



Natural Deduction and Tactics
0000000000 e

Specialize Tactic

r r
t : A t : A
H : forall (x : A), F(x) H : F(t)
@y /1)
B B

specialize (H(t)).

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Program



Theorem Proving in Rocq
900000000

A simple Tautology

We first illustrate proofs in Rocq with the simplest example — a tautology.

Rocq Code y

Theorem truth : True.
Proof.
exact I.
Qed.

The statement says that we can always derive True.
In Rocq terms, this means we can find an element in True.
What is True?

Rocq Code ¥
Inductive True : Prop :=

| I : True.

So the proof is straight forward. We constructively prove this by saying that I is an U8t
element of True.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Theorem Proving in Rocq

O@0000000

Proofs with Booleans

Rocq Code ¥

Theorem double negation : forall (b : bool), negb (negb b) = b.
Proof.

intros b.

destruct b.

- simpl. reflexivity.

- simpl. reflexivity.
Qed.

Tactic "simpl” unfold definitions and simplifies them (reduces them).

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Theorem Proving in Rocq
[e]e] lelelelele]e)

Aside on Equality

What's equality?

Rocq Code b

Inductive eq (A : Type) (x : A) : A — Prop :=
| eq_refl : x = x.

Key Idea : Proofs are equivalent to finding elements of the object, and this analogy is
consistent even for equalities.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Theorem Proving in Rocq
[e]e]e] lelelele]e)

Proofs by Induction

Rocq Code y

Lemma plus_O_n : forall n : nat, 0 + n = n.
Proof.

intros n.

induction n.

- simpl. reflexivity.

- simpl. rewrite IHn. reflexivity.
Qed.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Theorem Proving in Rocq
[e]e]e]e] Telelele)

Proofs by Induction - continued

Rocq Code b

Lemma plus n_Sm : forall (nm : nat), n + Sm =3 (n + m).
Proof.
induction n.
- intros. simpl. reflexivity.
- intros. simpl.
specialize(IHn m). rewrite IHn.
reflexivity.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Theorem Proving in Rocq

0O0000e000

Proofs by Induction - continued

Rocq Code b

Theorem plus_comm : forall nm, n + m = m + n.
Proof.
intros.
induction m.
- simpl. apply plus_O_n.
- simpl.
specialize(plus_n_Sm n m). intros.
rewrite H. rewrite IHm. reflexivity.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Theorem Proving in Rocq
[e]e]elele]e] lele)

Design Choices

Design choices alter proof methods / difficulty.

Let's revisit addition.
The original definition looks like

Rocq Code b

Fixpoint add_nat (n m : nat) : nat :=
match n with
| 0 =>m
| Sp = S (add p m)
end.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Theorem Proving in Rocq
000000080

Design Choices

Design choices alter proof methods / difficulty.

Let's revisit addition.
Alternatively, consider the following :

Rocq Code b

Fixpoint add_nat (n m : nat) : nat :=
match (n, m) with
| (0, 0) =0
| (0, .-m) = _m
| (_n, 0) = _n
| (S _n, S _m) = S (S (add_nat _n _m))
end.

This makes symmetry straightforward to prove.

Tadayoshi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming Language



Theorem Proving in Rocq
00000000

Questions?

shi Kamegai Oxford Compsoc

Intorduction to the Rocq Programming La



	Introduction
	Basics of the Language
	Natural Deduction and Tactics
	Theorem Proving in Rocq

