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Motivation

We want to generate proofs for programs, rather than test them.
— Provide a gurantee that it works on any input

What kind of things do we want to be able to verify?

® Write code with gurantees
— (e.g., Prove correctness of sorting algorithms)

® Prove mathematical theorems
— (e.g., Four Colour Theorem)

® Verify software and hardware
— (e.g., A verified C compiler)

All of these can / have been done in Rocq!
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Quick History

1969 : Howard, William A. "The formulae-as-types notion of construction”

® Curry-Howard Correspondence : Correspondence between proof systems and
models of computation

® (simply) propositions are types, and proofs are terms of those types
1989 : Coq's Initial Release

® An interactive theorem prover implemented using OCaml.

® Proof is built interactively by the user
® Proof is automatically checked by the type system (CIC)

® Can trust proof is correct if one trusts the Coq Kernel

2005 : Georges Gonthier formalizes the four colour theorem in Coq.
2023 : Coq renames itself to "The Rocq Prover”
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Getting a Rocq Environment

Find a suitable download for your device from https://coq.inria.fr/download

CoqlDE is the legacy IDE for Rocq. VSCode extensions are also avaialble.
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Goal of Today's Talk

® Give a brief outline of the language syntax
® Qutline how to write inductive proofs

® Understand the importance of design choices

What we won't cover (but definitely worth learning)
® Proof automation
® Type Theory and Dependent Types
® General theory behind the language
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Computation in Rocq

® We can explicitly compute computable functions by using the "Compute”

function.
Compute (2 + 3). =5
: nat
Compute (10 - 3). =7
¢ nat
Compute (andb true false). = false
bool
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Types and Expressions

Every expression in Rocq has a type. The type system prevents runtime errors.

® nat : The natural numbers
® bool : The booleans
® Prop : Propositions (for proofs)

® Set : Computable data

Coq has a builtin "Check” function which returns the type.

Check 5. 5
: nat
Check (negb false). negb false
: bool D
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If types do not match, Rocq will return an error.

Check (true + 3).

The term "true" has type "bool" while it is expected to have type

"nat"

What would the types for the following be?

Rocq Code b

Check (3 = 3).
Check (forall x : nat, x + 0 = x).

Key Point : Equality is not a boolean, it is a Proposition.
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Functional Programming in Rocq - Functions (1)

Main Idea : We can define functions using Definition and Fixpoint.

Rocq Code ¥

Definition name (parameter) : return_type := expression.
Definition double (n : nat) : nat :=n * 2.
Compute double 4.

=8
: nat
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Functional Programming in Rocq - Functions (2)

Main Idea : We can define functions using Definition and Fixpoint.

Rocq Code y

Fixpoint name (parameter) : return_type := expression.

Fixpoint factorial (n : nat) : nat :=
match n with
| o =1
| Sn' = n * factorial n'
end.

Compute factorial 5.

= 120
: nat

Fixpoints need to terminate to be well-defined. There needs to be some explicit
decreasing argument, which in this case is n. % ORD SN
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Functional Programming in Rocq - Functions (3)

Idea : We use pattern matching just like in Haskell.

y

Rocq Code

Definition is_true (b : bool) : bool :=
match b with
| true = true
| false = false
end.

Fixpoint is_even (n : nat) : bool :=
match n with
| 0 = true
| Sm' = negb (is_even m')
end.
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Functional Programming in Rocq - Constructors

Rocq Code y

Inductive nat : Set :=
| 0O : nat
| S : nat — nat.

Inductive list (A : Type) : Type :=

| nil : list A
| cons : A — list A — 1list A
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Interactive Theorem Proving

When writing a proof in Rocq, the IDE will give you the proof context and goal that
you are trying to prove.

A proof context is a multiset I of formulas, and a goal F is a formula that one tries to
derive from the context.

Rocq Code b
Given a pair (I, F), writing I = {F1, F2, ..., Fo}, the Rocq IDE will display this as

1/1)

From here, we use elements of the context to constructively give an element of F. If
such a proof exists, we write ' - F.
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Natural Deduction

Rocq has a variety of builtin tactics, which we use in proofs.

Reasoning with natural deduction have corresponding tactics.

Axiom Rule :

assumption. (or exact x.)
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Intro — :
r r
____________ (1/1) H: A
A~»s8B (1/1)
B

intro H. (or intros H.)
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Elim — :

r r

____________ (1/1) e _(1/2)

B A
r
H: A
____________ (1/2)
B

assert A as H.
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Elim — 2 :
r r
H: A — B H: A — B
____________ (1/1) U ¢ VA )
B A
apply H.
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Intro A :

r r

____________ (1/1) e ___(1/2)

AANB A
r
____________ (2/2)
B

split.
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Intro V :
r r
____________ (1/1) (/1)
AV B A
or
r
____________ (1/1)
B

left. (or right.)

ford Compsoc

Intorduction to the Rocq Programmin



Natural Deduction and Tactics
00000008000

Intro V :
r r
(1/1) x : A
forall (x : A), B (CVAD)
B

intro x.

The variable to be introduced must be free in I'. You can alternatively just write
"intro” and Rocq will give a free name to that variable.
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Intro 3 :
r r
(G (/1)
exists (x : A), B B[t/x]
exists t.

If the existential is bound in B, Rocq will again automatically rename bound variables
(in De Bruijn Indices fashion).
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r r
H: AVB H:A
«@/vy (1/2)
Y (¢
r
H: B
____________ (2/2)
¢

destruct H.

® You can do the same with conjunctions, existentials, or on elements (splits them
into constructors).
® The "as” clause lets you put a name on hypothesis, otherwise Rocq will
automatically generate them. ROFPSa
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Specialize Tactic

r r
t : A t : A
H : forall (x : A), F(x) H : F(t)
@y /1)
B B

specialize (H(t)).
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A simple Tautology

We first illustrate proofs in Rocq with the simplest example — a tautology.

Rocq Code y

Theorem truth : True.
Proof.
exact I.
Qed.

The statement says that we can always derive True.
In Rocq terms, this means we can find an element in True.
What is True?

Rocq Code ¥
Inductive True : Prop :=

| I : True.

So the proof is straight forward. We constructively prove this by saying that I is an U8t
element of True.
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Proofs with Booleans

Rocq Code ¥

Theorem double negation : forall (b : bool), negb (negb b) = b.
Proof.

intros b.

destruct b.

- simpl. reflexivity.

- simpl. reflexivity.
Qed.

Tactic "simpl” unfold definitions and simplifies them (reduces them).
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Aside on Equality

What's equality?

Rocq Code b

Inductive eq (A : Type) (x : A) : A — Prop :=
| eq_refl : x = x.

Key Idea : Proofs are equivalent to finding elements of the object, and this analogy is
consistent even for equalities.
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Proofs by Induction

Rocq Code y

Lemma plus_O_n : forall n : nat, 0 + n = n.
Proof.

intros n.

induction n.

- simpl. reflexivity.

- simpl. rewrite IHn. reflexivity.
Qed.
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Proofs by Induction - continued

Rocq Code b

Lemma plus n_Sm : forall (nm : nat), n + Sm =3 (n + m).
Proof.
induction n.
- intros. simpl. reflexivity.
- intros. simpl.
specialize(IHn m). rewrite IHn.
reflexivity.
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Proofs by Induction - continued

Rocq Code b

Theorem plus_comm : forall nm, n + m = m + n.
Proof.
intros.
induction m.
- simpl. apply plus_O_n.
- simpl.
specialize(plus_n_Sm n m). intros.
rewrite H. rewrite IHm. reflexivity.
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Design Choices

Design choices alter proof methods / difficulty.

Let's revisit addition.
The original definition looks like

Rocq Code b

Fixpoint add_nat (n m : nat) : nat :=
match n with
| 0 =>m
| Sp = S (add p m)
end.
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Design Choices

Design choices alter proof methods / difficulty.

Let's revisit addition.
Alternatively, consider the following :

Rocq Code b

Fixpoint add_nat (n m : nat) : nat :=
match (n, m) with
| (0, 0) =0
| (0, .-m) = _m
| (_n, 0) = _n
| (S _n, S _m) = S (S (add_nat _n _m))
end.

This makes symmetry straightforward to prove.
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Questions?
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