Notes on CAFV

Apiros3

First Version : May 20, 2025
Last Update : May 20, 2025

Contents

|l Automatg

1.3 Omega-regular expressiod
1.4 Nondetermininstic Biichi automatiod
E Grapa
|2.1 Binary Decision Diagrarr‘
E Loéig
.1 Propositional Logid
B.l.l Normal Forms and Satisﬁabilityl
3.2 Linear Temporal LOZIA . . o o e o
3.3 Computation Tree Log:id
B.3.1 Positive Normal Forrd
|4 Labelled Transition Systems{
h.l Basic Deﬁnitionsl
h.l.l Parallel Compositiod
|4.2 Linear Time Propertiesl
4.2.1 Classes of Linear Time Propertiesl
|4.3 Semanticﬂ ..
1.3.1 Over Propositional Logi(i
1.3.2 Over LT!?
1.3.3 Over CTL e e e e e
1.4 CTL vs LTY

1.5 CTLj ..

5 Model Checking
B.1 CTL . . o

5.1.1 Symbolic Model Checking via BDDY oo i
b.1.2 Bounded Model Checkingj
5.2 LTI . oo
.3 Software Model Checkingl

ki Equivalencel
6.1 BiSimulationot
5.2 Simulatioﬂ ..

1 Automata

1.1 Regular Language

- is closed under intersection and complement

1.2 NFA

Definition 1.2.1. A nondetermininstic finite automation (NFA) is a tuple A = (Q,%,0,Qo, F)
where

e Q) is a finite set of states

e X is an alphabet

e §:Q x X — 29 is a transition function
e Qo C Q is a set of initial states

e 'C Q is a set of accepting states

Definition 1.2.2. We define L(A) to be the set of finite whose run ends in an accept state. (TODO,
formally write)

Definition 1.2.3. NFAs A, A" are equivalent if L(A) = L(A).

Lemma 1.2.4. A set of finite words L C ¥* is a regular language if L = L(A) for some finite
NFA A.

Proof. TODO. 0
Definition 1.2.5. We write A; ® As for the (canonical) NFA that accepts L(A1) N L(A3).

Remark 1.2.6. Given an NFA A, checking £(.A) # () is equivalent to finding a path that can reach
a final state from any state in)y, reducing the problem to graph reachability.

1.3 Omega-regular expression
Definition 1.3.1. An w-regular expression over X is of the form
G = El(Fl)w +oe +En(Fn)w

where E; and F; are reqular expressions with € ¢ L(F;). Define L,(G) C £* to be the language
of an w-regular expression, defined by

L,(G) = L(E)L(F)YU---UL(E,)L(F,)”

where
L(E)? ={wiwaws -+ | w; € L(E)}

Definition 1.3.2. £ C X% is an w-reqular language if L = L, (G) for some w-regular expression

G.

1.4 Nondetermininstic Biichi automation

Definition 1.4.1. A Nondetermininstic Biichi automation (NBA) is a tuple,

A=(Q,%,4,Qo, F)

where

e Q) is a finite set of states

e X is an alphabet

e §:Q x X — 29 is a transition function

e Qo C Q is the set of initial sets

e 'C Q is a set of accept states
Remark 1.4.2. The setup is the same as NFAs.

Definition 1.4.3. A run of an NBA A on an infinite word w = AgA1 - -+ is a sequence of automata
states qoq1 -+ - such that qo € Qo and q; — A; — qiy1 for all i > 0.

An accepting run is a run with q; € F for infinitely many 1.

The language of A, denoted L, (A) is the set of all infinite words accepted by A.

Example 1.4.4. Consider the NBA
_a
— 4o, — q1
where ¢; is the only accepting state. Accepted words are exactly the words that accept a infinitely
often.
Example 1.4.5. Consider the NBA,

—aVb —b

where qg is the only accepting state. Then the accepted words are exactly those where b always
follows (could be same index) an a.

Lemma 1.4.6. NBAs are closed under intersection and complementation.
Lemma 1.4.7. NBAs are strictly more expressive than DBAs.

Definition 1.4.8. An NBA A = (Q,X%,,Qo, F) is non-blocking if every symbol is available in
every state (0(q,A) # 0 for all g € Q and A € X) In particular, every infinite word has a Tun
through A.

Proposition 1.4.9. NBAs can always be converted to a non-blocking NBA by adding a ‘trap’ state
that catches every non-used symbol and loops around the trap state.

Definition 1.4.10. A generalised nondetermininstic Bichi automata (GNBA) is an NBA with k
sets of accept states, where an element from each set must be visited infinitely often (the intersection
of states visited infinitely often with each set is nontrivial).

Lemma 1.4.11. Given any GNBA A, there is an NBA A’ that accepts the same words.

Proof. Sketch. Let Fi,...,F} be the set of accepting sets. Given an GNBA, construct an NBA
that is k£ copies of the GNBA such that we move between copies modulo & when accepting sets are
reached. Let the accepting states be the accepting states in the k-th copy, with the initial states
in the 1st copy. Then we visit accepting states infinitely often if and only if we visit elements of
P, ..., Fy each infinitely often. O

2 Graph

2.1 Binary Decision Diagram

Definition 2.1.1. A binary decision tree is a graphical representation of boolean functions
(f(x1,...,2n) | {0,1}™ — {0,1}) is a perfect binary tree of height n such that

e nodes at height n — ¢ are laballed by boolean variables ;i1
o the two children have edges laballed 0 (dotted) and 1 (solid)

o leafs are labelled with 0 or 1, based on the value of f(x1,...,xy) with x; substituted with the
edge taken to reach the leaf.

We can merge isomorphic subtrees to make an DAG (direction is induced) with smaller repre-
sentation.

Definition 2.1.2. Fiz any total orderig on the variables (the canonical one is induced by the
ordering on the tree). We say that the DAG is ordered if for any path along the DAG, variables
appear at most once each in the order. It is reduced, if

o Uniqueness: given two mnon-terminal nodes w,v, if var(u) = var(v),then(u) =
then(v), else(u) = else(v), then u = v, where var is the variable on the node, then and
else are the nodes reached by following 1 and O respectively.

o Non-redundant: for any non-terminal node u, then(u) # else(u).
o Terminal nodes are merged
If the DAG is reduced and ordered, it is called a binary decision diagrams (BDD).
Remark 2.1.3. We can reduce heuristically reduce towards a BDD by the following techniques:
o Merge isomorphic nodes (including terminal ones)
o Remove redundant nodes (with identical children)

Theorem 2.1.4. Given a fixed ordering on the variables, for any propositional formula ¢, there
exists a unique BDD equivalent to ¢.

Proof. OoSN. O

Corollary 2.1.5. Given a fized ordering on the variables, two boolean functions are equivalent if
and only if the reduced, ordered BDDs are isomorphic.

Proof. Follows immediately from the previous theorem. O

Proposition 2.1.6. Given a BDD, satisfiability checking, tautology checking are both constant time
problems.

Proof. A BDD represents a satisfiable boolean function if there are any edges into 1 (or the 1 leaf
exists). It is a tautology if there are no edges into 0 (or the 0 leaf does not exist). O

Proposition 2.1.7. FEquality checking of BDDs can be done in linear time.
Proof. OoSN. O

Example 2.1.8. Consider the DNF,

f=@iAy) V-V (Tn Ayn)

The interleaved ordering z1 < y; < -+ < &, < yn, gives a BDD of size 2n 4 2, whereas the ordering
T << Ty <yp < -+ <y gives a BDD of size 271

Theorem 2.1.9. Finding the ordering that gives the minimal BDD size is NP-complete.
Proof. OoSN. O

Given BDDs (with some fixed ordering), that represents a boolean function, we can give BDDs
that represent negation, conjunction, and disjunction. Negation is simply replacing the children
out of each node with one-another.

Example 2.1.10. Given BDDs that represent boolean functions A and B, we can give a BDD
that represents AV B (and similar for conjunction) in O(]A||B|) time. The algorithm is as follows:

1. Start with the pair of root nodes in A and B. Recursively do the following:

2. Pick the smaller variable of the pair, and draw an edge to the pair that corresponds to
substitution of 0 and 1. Recursively apply the process on the new pair.

The label on terminal nodes (u,v) is simply var(u) V var(v) (or A if conjunction). The resulting
BDD needs to be reduced, but this can be done as part of the recursive operation by implementing
the reduction rules in a bottom-up fashion.

When implementing BDDs, one can do so efficiently (memory-wise) by making a multi-rooted
BDD such that there are no duplicate BDD subtrees accross multiple BDDs. Whenever a new node
is created, check for existence first (if exists, attach to that). BDD equality becomes trivial by a
simple pointer comparison.

Thus, set of states can be implemented by bit vectors and hashing, whereas transition relations
are represented by a sparse adjacency matrix.

3 Logic

To add: up to logic, o [~ 1) is equivalent o = —1)

3.1 Propositional Logic

Definition 3.1.1. Propositional logic formulas are spanned by
¢ ==true | false |a|d AP | OV P |0

where a € AP is an atomic proposition.

Often we give a slightly more minimal set of grammars,

¢ u=true|al|dNAo|

As then we have the logical equivalences

o false = —true

o P11V P2 = (1 A —g2)

o« P1— P2 =01 A do

o ¢1 = P2= (91— P2) A (P2 — 1)
$1® d2 = (1 A —¢2) V (m¢1 A ¢2)

3.1.1 Normal Forms and Satisfiability

Definition 3.1.2. Let ¢ be a propositional logic formula over boolean variables x1,...,x,. We say
that ¢ is satisfiable if there exists a valuation of x1,...,x, such that ¢(x1,...,x,) evaluates to
true.

Theorem 3.1.3 (Cook’s Theorem). Checking satisfiability is NP-complete.

Proof. todo. O
Definition 3.1.4. Let ¢ is a tautology if ¢(x1,...,x,) evaluates to true for every valuation of
TlyeeesTp.

Theorem 3.1.5. Tautology checking is co-NP-complete.

Definition 3.1.6. A formula ¢ is in conjunctive normal form (CNF) if ¢ = \\/ Li; where {;;
s a literal of the form xp or —xi.

Lemma 3.1.7. Any boolean formula is equivalent to a CNF-formula.
Proof. Use de Morgan, double negation, and distributivity. O
Proposition 3.1.8. Tautology checking of a formula in CNF is in P.

Proof. Tautology checking for a ¢ in CNF is equivalent to tautology checking each conjunctive
clause. One can tautology check each clause by seeing if for every literal, it’s opposite literal is also
in it. O

Definition 3.1.9. A formula ¢ is in disjunctive normal form (DNF) if ¢ =\/ \{i; where {;;
1s a literal of the form xj, or —xj.

Lemma 3.1.10. Any boolean formula is equivalent to a DNF-formula.

Proof. Use de Morgan, double negation, and distributivity. O
Proposition 3.1.11. Satisfiability checking of a formula in DNF is in P.

Proof. SAT checking reduces to seeing if any clause is satisfied. For every clause, we check that no
literal has both a positive and negative occurence, and this is equivalent to SAT checking. O

Proposition 3.1.12. Tautology checking of a formula in DNF is in co-NP-complete.
Proof. OoSN. O

Example 3.1.13. For a DNF size O(n), the equivalent CNF can be size (2"). Consider (z1 A
y1) V-V (zn Ayn). It’s CNF needs to cover every 2" possibilities of satisfiability.

Definition 3.1.14. A formula ¢ is in if-then-else normal form (INF), if
pu=1]0|z— ¢,¢
where x is a boolean variable and x — ¢1, 2 = (x A P1) V (mx A).

Theorem 3.1.15 (Shannon’s expansion theorem). For every Boolean formula ¢ and variable x,

¢ =z — ¢[1/x],¢[0/x].
Proof. OoSN. O
Corollary 3.1.16. Any Boolean formula is equivalent to one in INF.

Proof. Immediate consequence of Shannon’s expansion theorem, after substitution into all variables
it should reduce to a 1 or 0.
Alternatively, one may simply prove this through structural induction.]

3.2 Linear Temporal Logic

Definition 3.2.1. Linear Temporal Logic (LTL) formulas 1) is defined by the grammar
Yu=true|a|YpAY [[Ov YUY
The temporal operators mean the following:
e Ow means that 1 is true in the next state
o 1 U1he means that ¥y is eventually true and 11 is true until then

Notation 3.2.2. Given a word o € (247)¥ we can write 0 = AgA1Az---. We write o[j] = A,
and O'[]] = AjAj+1Aj+2 s

We write semantics as follows:

o 0 [= true is always true

e 0 [=aif and only if a € o[0]

o 011 Aty if and only if o =11 and o =
e o ifand only if o | ¢

o 0 = if and only if o[l...] E ¥
e 0 = Y1 U1 if and only if there exists & > 0 such that o[k...] = 2 and for all ¢ < k,

Definition 3.2.3. LTL formulae 11,19 are equivalent, written 11 = o if they are satisfied by
the exact same w-word (in 22F). That is, o =1y if and only if o |= 1.

Definition 3.2.4. We define Words()) = {o € (227)¥ | o = ¢},
Remark 3.2.5. By simple rewriting, we have that 1)1 = 19 if and only if Words(t1) = Words(1)3).
Lemma 3.2.6. ¢ = 19 if and only if for any LTS M, M =11 < M = s
Proof. OoSP. (Not trivial, check ltr) (apparently standard automata-theoretic filtration argu-
ment?7?) O
The operators are powerful enough to talk about additional operators:
e Eventually ¢ : Q¢ = true U ¢
o Always 1 : i = —(true U)

Notation 3.2.7. We have alternative syntax:

e Oa=Xa
e Ou=Fa
e a=Ga

Lemma 3.2.8 (Distributivity). We have the following distributivity laws

O Vipe) = (OY1) V (Ot2), O Aha) = (OY1) A(Ot2), O Ugz) = (Ovr) U (O2)
O(tp1 Adpg) = 0oy ADg, O(th1 V ahg) = Orpy V Do,
VLU (P2 Vs) = (1 Vap) U (1 Vs), (P1 Athe) Uths = (1 Uhs) A (Y2 U o)
Proof. Straightforward. O

Lemma 3.2.9 (Duality / Negation Propagation). We have the following dualities

“Ov=0% =0 -Op=0w
Proof. Straightforward. O

Lemma 3.2.10 (Other Properties). We also note idempotency and expansion laws:
OO0y =0y 00y =0¢
YUy =1 U (1 Uv2) 1Uve =91V (1 AO(¥1 Ue))
Ly =9 A0y Qv =9 v OO0y
Proof. Straightforward. (At least in the cafv course, the standard equivalence we use is ¢a = “0O-a

and Oa = —0—a) O

Remark 3.2.11. Proofs for all of the above are straightforward, by using the fact that A = B if
and only if for all o, 0 F A <= o |= B, or using known equivalences.

Example 3.2.12. We will show:
O0a AOOb £ OO(a A b)
As the word {a}{b}{a}{b} --- is satisfied only by the left.

3.3 Computation Tree Logic

If LTL was based on a time-linear system, CTL is the version which deals with branching to
different paths over time. Intuitively, linear time paths have a chosen path to model over, whereas
computation trees have branching that can be ‘chosen’ afterwards.

Definition 3.3.1. A computation tree logic (CTL) formula is a state formula ¢ given by
b= true || oA 6|~ |V | 3

where

V=0 oUd| 0o [0o
Note that temporal operators are paired with quantifiers.
Notation 3.3.2. We can write Vi = A ¢ and J¢ = FE .

Definition 3.3.3. The release operator ¢1Rpo corresponds to ‘¢o always holds, but is no longer
required after ¢ holds’ That is, m |= ¢1 Ry if either w[j| = ¢2 for all j > 0, or there exists a i > 0
such that w[i] = ¢1 and 7[k] = ¢2 for all k <.

Proposition 3.3.4 (Release is the dual of until). We have that ¢1Rps = —(—¢p1 U —¢2) and
(P11 U d2) = =1 R¢a.

3.3.1 Positive Normal Form

Definition 3.3.5. A CTL formula is in positive normal form (PNF) if negation is applied
only to atomic propositions.

Lemma 3.3.6. Any CTL formula can be converted to an equivalent formula in PNF.

Proof. We push negation inside inductively by using duality. O

4 Labelled Transition Systems

4.1 Basic Definitions

States represent possible configurations of systems, whereas transitions represents possible ways
the system can evolve.

Definition 4.1.1. A labelled transition system (LTS) is a tuple (S, Act,—, 1, AP, L) where
o S is a set of states (state space)
e Act is a set of actions
e —C S x Act x S is a transition relation
e I C S isa set of initial states
o AP is a set of atomic propositions

o L:8S — 24P s q labelling function

Essentially is a directed graph where vertices represent states and edges represent transitions.
States are represented using atomic propositions in AP, which represent facts about each state.
Transitions are labelled with actions.

Definition 4.1.2. An LTS is finite if S, Act, AP are all finite.
Notation 4.1.3. We write s — o — &' if (s,,8’) €= and s - ¢’ if s — a — & for some «

Definition 4.1.4. We define Post(s,a) = {s' € S | s — o = s’} and Post(s) = [J,cpe POSE(s,).
Similarly, Pre(s,a) = {s' € S| s’ —a — s} and Pre(s) = U eae Pre(s, a).
A state s is called terminal if Post(s) = ().

Terminal states often represent termination of a program or error / undesired behavior like
deadlock.

Definition 4.1.5. A path is an alternating sequence socgsi1820i - -+ such that s1 — a; = Si11-
A finite path or a path fragment is a finite prefix of a path, ending in a state.

Definition 4.1.6. A state s’ is reachable from s if there exists a finite path from s to s'. s is
called a reachable state if it is reachable from some sg € I.

Notation 4.1.7. We write A“ to be A(AY).

Remark 4.1.8. Post*(s) is the set of states reachable from s, and Pre*(s) is the set of states that
can reach s.

As notation, we write Post*(C) = (¢ Post™(s) for a set C'C S and Similarly for Pre.

Given an LTS M, we write Reach(M) = Post* (1)

Example 4.1.9. A program can be modelled using an LTS by a set of tuples that represent the
location (in code) and what the variables are.

Remark 4.1.10. LTS exhibits nondeterminism, as we can have an unknown system environment
(like user input), abstraction (omitting detail like probability of success), underspecification, or
concurrency. This is seen as nondeterminism over the choice of transition in each state and the
choice of initial state.

Definition 4.1.11. The distance 6(s,t) from a state s to state t in LTS M is the length of the
shortest path between them. That is,

0(s,t) =min{n | Isg,...,8n, S0 = sA S, =t AV0 < i <mn,s — Sit1}
where min @ = oco.

Definition 4.1.12. The diameter d(M) of a LTS M s the mazimal length of a path to any state.
That is,
d(M) = max{d(t) | d(t) # co Nt € S}

where
d(t) = min{o(s,t) | s € I}

Definition 4.1.13. The recurrence diameter rd(M) of a LTS M is the longest loop-free path.
That is,

rd(M) = max{n | 3sg,...,5p,50 € I AV0<i<n,s; = 5.1 AV0O<i<nVi<j<n,s #s;}
Note that each value can be computed symbolically with a SAT solver.
Proposition 4.1.14. For any LTS M, rd(M) > d(M).
Proof. Straightforward. Any minimal path to a state us a loop-free path. O

10

4.1.1 Parallel Composition

Definition 4.1.15 (Composition of LTS). Let My and My be two LTSs, where M; = (S;, Act;, —;
i, AP;, L;). We define interleaving M |||Ma as the LTS

M1H|M2 = (Sl X S9, Acty U Acty, —, 11 X Ir, AP U APQ,L)
where L((s1,s2)) = L(s1) U L(s2) for any s1 € S1 and sy € Sa, and — is defined such that

s1— a1 8 S9 — a9 8

(s1,82) —a — (sh,82) (s1,82) —a = (s1,85)

Example 4.1.16. Consider parallel composition over programs that have shared access to some
variable,
[z :=x+ 1]|||[ly := 2 % 2]

Nondeterminism models competition between these variables (with two branches representing the
different cases of who won)

Definition 4.1.17. Synchronisation between parallel components My, Mo is My||g My for a set
H C Act of handshake actions such that synchronisation happens only on those actions. Explicitly,

MlHHMQ = (Sl x S9,Acty U Acty, —, 1 X 15, AP1 U APQ,L)
where — s defined as

/ / / /

§1 — Q& —>1 S /\82—0[—>28 S1] — & —1 S 9 — QX =9 S
! —~2acH —~a¢H 2
(s1,82) — = (s, 85)) (s1,82) —a = (8], 53)

ad H
(51,52) —a = (3, 55 ¢

4.2 Linear Time Properties

For this section we assume LTSs are finite and have no terminal states (such that all maximal paths
are infinite).

Definition 4.2.1. We define the trace of a path m = sgs1--- to be the sequence of atomic propo-
sitions true in each state, written trace(m) = L(so)L(s1) -

Notation 4.2.2. We write Paths(M) to be the set of all paths starting from an initial state in I.

We also write Traces(M) for the set of all traces of those paths.
Definition 4.2.3. A linear-time (LT) property is a subset of (24T)%

Definition 4.2.4. A satisfaction M = P of an LT property P by an LTS M, or M satisfies P
when Traces(M) C P.

Example 4.2.5. The property P: “the traffic lights never both show green; and greens simulta-
neously” is written as

P ={AgA1Ay--- € (2AF)w | A; ¢ {green,, green, }for all j > 0}

Definition 4.2.6. M and M’ are trace equivalent if Traces(M) = Traces(M') Similarly, M is
a trace inclusion of M' if Traces(M) C Traces(M’).

Proposition 4.2.7. We have
o M and M’ are trace equivalent if and only if for any LT property P, M' =P < M = P
e M is a trace inclusion of M' if and only if for any LT property P, M' = P =— M = P.
Proof. Straightforward. O

11

4.2.1 Classes of Linear Time Properties

Definition 4.2.8. Py, C (2AP)‘” s an invariant if there is a prositional logic formula ¢ such that
Py = {AgA1 Ay - € (2%P) | A; |= ¢ for all j > 0}

It is a condition about states that must always be true, and hence can be checked in each state
separately.
Checking invariants can be done via reachability. Specifically, we have

Proposition 4.2.9. The following are equivalent:
e MEP
o for all m € Paths(M), Trace(w) € P
o for all m € Paths(M), Vs € m, L(s) = ¢

o for all s € Reach(M), L(s) = ¢
Proof. Straightforward. O

Remark 4.2.10. As LTSs are finite, we can check reachability and check that L(s) = ¢ to
determine if M |= P in finite time.

Definition 4.2.11. P C (2AP)°J is a safety property if for all words o € (2AP)‘” \ Piafe, there
is a finite prefix o' of o such that
Paage N {0" € (2P | o' is a prefiz of 0"} =0
In particular, it is a property such that if there is a violation, there is a finite prefix (evidence)

such that every infinite path extending the finite prefix does not satisfy Psafe.

Remark 4.2.12. Invariants are safety properties, but the converse is not true. In the former, given
that the invariant is established by ¢, then the set of ‘bad’ prefixes are of the form ApA;--- A,
such that A; ~ ¢ (and is a word that is a prefix of an element of a path).

The latter is clearly not true, by considering sequences that depend on where it came from (e.g.,
green; always appears before greeny).

Definition 4.2.13. Given a trace o € (22F)“, define
pref(o) = {0’ € (22F)* | o' is a finite prefiz of o'}
and standard overloading to a linear time property P. Also, take
closure(P) = {0 € (2*F)¥ | pref(o) C pref(P)}
Proposition 4.2.14. Given a LT property P, P is a safety property if and only if closure(P) = P.

Proof. Intuition: Things in the closure cannot act as ‘evidence’ against nonmembership. We always
have closure(P) D P, and if we have o € closure(P) \ P, by safety, we have a finite prefix of o,
say o’ that acts as evidence. Now, every extension of ¢’ is not in P, which contradicts the fact
o' € pref(P).

If P is not safe, the element which contradicts the safety property is exactly what we use to
show strict inclusion. O

Definition 4.2.15. Py C (22F)¥ is o liveness property if for all finite word o € (2°7)*, there
exists an infinite word o' € (2°P)¥ such that 00’ € Pye.

Proposition 4.2.16. P is live if and only if the pref(Pyye) = (247)*

Proof. Clear. 0

12

4.3 Semantics

4.3.1 Over Propositional Logic

Definition 4.3.1. Given a state s on a LTS M, we write s = ¢ if the model that assigns only
elements of L(S) to be true derives ¢

4.3.2 Over LTL

Definition 4.3.2. Given an LTS M, it satisfies an LTL formula v if for all paths, its trace satisfies
Y. That is, M = if for all m € Paths(M), trace(n) = .
Then M = 1 if and only if Traces(M) C Words(v))

Lemma 4.3.3. LTL can represent invariants, safety properties, and liveness properties. Moreover,
every invariant can be represented as (¢ for some propositional formula ¢

Proof. OoSN. 0

Example 4.3.4. O(receive — (Oack) is a safety property that says “ack always immediately follows
receive”. O¢, [JO¢ are both liveness properties.

Remark 4.3.5. M = —) implies M [~ 1 (assuming nonempty trace) but not the other way
around. This is a direct consequence of the fact that to not model only requires evidence of the
negation by one trace, where as a model of the negation requires that it is not true in every trace.

LTLs can model existence well in the sense that it can verify M = A by exhibiting a trace that
satisfies = A. However, it cannot verify things that talk about ‘every’ execution.

Proposition 4.3.6. M | 1 if and only if Traces(M) N Words(—1)) = ()
Proof. Clear. 0

Remark 4.3.7. This equivalence allows the generation of counterexamples in LTL.

4.3.3 Over CTL

Definition 4.3.8. Given a state s of an LTS M = (S, Act,—,I, AP, L), we have for states,
o s = true is always true
e sk=a if and only if a € L(s)

s @1 Ay if and only if s |= ¢1 and s = ¢o

o sk ¢ if and only if s = ¢

o s =Y if and only if forall m € Paths(s), 7 = 9

o s E 3 if and only if for some w € Paths(s), m E ¢
and for paths,
o mE Q¢ if and only if w[1] = ¢
o T ¢1Us if and only if 3k > 0 such that w[k] | ¢2 and for all i < k, [i] E ¢1
Then, we write M |= ¢ if for all sg € I, we have sg = ¢

13

Definition 4.3.9. ¢1 and ¢2 are equivalent, written ¢1 = ¢o if for any state s of any LTS M,
sE® = sk ¢

Lemma 4.3.10 (Path quantifier duality). We have
4.4 CTL vs LTL
Definition 4.4.1. A CTL formula ¢ and LTL formula ¢ are equivalent if for any LTS M,

ME$ &= MEYy

Lemma 4.4.2. There are formulae in LTL that cannot be expressed in CTL. Specifically, OTa has
no equivalent formula in CTL.

Example 4.4.3. We have YOVa # O0a. Consider the LTS,

() ()

7 S0 S1 S9

where sg and s have labels {a}. Every path of this LTS is of the form sgsg -+ or spsg - - - Sps1s2 -+,
both of which satisfy O[Ja. On the other hand, considering the path sgsg-- -, we clearly don’t have
OVOa, as the secondary path may fall to sy through s;.

Lemma 4.4.4. There are formulae in CTL that cannot be expressed in LTL. Speficially, YOI30a
cannot be expressed in a LTL.

Proof. Suppose there exists a LTL formula ¢ equivalent to V[130a. Consider the LTS M defined

| ole

—> S0 — S1

where the label for s is {a} and empty otherwise. Note that we have M = VO30a. By equivalence,
we have M |= 1), such that Traces(M) C Words(v)).
Now consider the LTS M’ defined by

()

— S0

with labels to the emptyset such that Traces(M’) C Traces(M). We therefore have M’ = 1.
However, M’ | YO30a, a contradiction.]

Remark 4.4.5. Expressiveness of CTL and LTL are incomparable. The key difference is that
CTLs is a branching time, state-based logic, whereas LTLs are a linear-time, path-based model.

Theorem 4.4.6. Let ¢ be a CTL and v be the LTL obtained by removing the quantifiers from ¢.
Then ¢ =1 or there exists no LTL formula equivalent to ¢.

Proof. Check PoM Thm 6.18, no proof given. 0

14

4.5 CTL*
Definition 4.5.1. CTL* formulae are ¢ defined on states formulas
¢u=true|a|dA¢| ¢ | VY|
where path formulas are
Y=o | YvAY [[OP YUY |0y | DOy

This is a superset of CTL and LTL, where we can have nested temporal operators.
Definition 4.5.2. We give semantics on states s of an LTS M = (S, Act,—, I, AP, L) with

e s = true is always true

e sk aif and only if a € L(s)

s = ¢y Ay if and only if s = ¢y and s |= ¢s

e sk —¢ if and only if s I~ ¢

e s |= Vo if and only if for all w € Path(s), 7 k= ¢

o s = Y if and only if there exists some w € Path(s) such that 7 = ¢

and for a path T,
e 7 ¢ if and only if 7[0] =
b= 1 Ay if and only if 7 = and 7w = s
e 7~ if and only if T 1
e O if and only if w[l...] = ¥

m = Y Uy if and only if there exists a k > 0 such that 7[k...] = 19 and for all i < k,

Definition 4.5.3. CTL* formulae ¢1 and ¢o are equivalent if for all LTS M, we have
ME¢ <= ME ¢

Example 4.5.4. Given an LTS M, we can have M (= ¢ and M [~ —¢. Consider ¢ = Ia such
that —¢ = -d0a = VO—a.

\

i
>

S9 <

where labels on sp and sy are {a} and empty otherwise. The consequence is due to the propositions
needing to be satisfied by all initial states. ¢ is not satisfied by the path starting from so, and —¢
is not satisfied by the path starting from sg.

Definition 4.5.5. Any two states s; and so are CTL* equivalent, written s; =cry* S2, if
s1 E ¢ < sy E ¢ for all CTL* formulas ¢. Similarly, two LTSs My and My are CTL*
equivalent, written My =g+ Ma

Remark 4.5.6. This notion then induces LTL-equivalences and CTL-equivalences.

15

5 Model Checking

5.1 CTL

Definition 5.1.1. A witness for a CTL formula 3 on o LTS M is a sufficiently long prefix of
a path © of M with 7 |= 1 such that it shows how ¥ can be true.

A counterexample for a CTL formula Vi on a LTS M is a sufficiently long prefiz of a path
m of M with w W~ ¢ (a witness for).

Definition 5.1.2. We define Sat(¢), called the satisfaction set for the CTL formula ¢ as

Sat(¢) = {s € S | 5 |- 6}
Definition 5.1.3. Ezistential Normal Form (ENF) for a CTL is a formula with no ¥ and no 3.
Lemma 5.1.4. Fvery formula has an equivalent formula in ENF.

Proof. Sketch. Every V can be removed using the path quantifier duality, Vi = =31 (where we
use duality again on the temporal operator immediately.)
We also have that ¢ and O are derived operators (or simply take the dual), and that,

o 30¢ = I(true U ¢)
e VO¢=-30 ¢
o V(1 Ug2) =—3(ng2 U (m¢1 A =¢2)) A =F(L¢o)
[

Now, to check whether M |= ¢, we want to see if s = ¢ for all initial states s € I. It is therefore
sufficient to check that I C Sat(¢). We can compute Sat(¢) recursively on ¢. Writing ¢ in ENF,
we have

. Sat(true) =

. Sat(a) = {s € S| ac L(s)}
« Sat(¢1 A ¢2) = Sat(¢d1) N Sat(dz)

. Sat(=¢) = S\ Sat(o)

. Sat(3O) = {s € S | Post(s) N Sat(¢) # 0}

e Sat(3(é1 U ¢s)) = CheckExistsUntil(Sat (1), Sat(és))
e Sat(300¢) = CheckExists Always(Sat(6))

We compute Sat(3(¢1 Uepe)). Start from T' := Sat(¢sz), compute the least fixed point of F(T) =
T U {s € Sat(¢1) | Post(s) N T # 0}, effectively adding predecessors of states in T that satisfy ¢;.
This is based on the idea that 3(¢1 U pa) = @2 V (¢1 AT O I(¢1 U ¢2)).

In a similar fashion, we can compute Sat(30¢) given Sat(¢) by taking the expansion law

I0¢ = A3 30

16

Then starting with 7' := Sat(¢), we can take the greatest fixed point of the function F(T) =
T N{s € Sat(¢) | Post(s) NT # 0}. Alternatively, model checking on 3¢ is essetially elements
along paths that end up on strongly connected components of the subgraph induced by ¢.

Given a LTS M and CTL formula ¢, determining M = ¢ is in O(|M| - |¢|). where |M]| is the
number of states + number of transitions (size of graph) and |¢| is the number of operators in
¢. The worst case is given when all operators are temporal operators where each requires a single
traversal of the whole model.

5.1.1 Symbolic Model Checking via BDDs

Definition 5.1.5. Suppose we have an encoding of X into n Boolean variables (in particular, this
is always possible for a finite set X). Consider a state space X and a subset X' C X. We define a
characteristic function 1x/ : X — {0,1} to be the function that maps to 1 if and only if v € X'.
Then, 1x: induces a function fx(x1,...,2y,): {0,1}" — {0,1}. Then, fx/ can be represented by a
corresponding BDD, which we write Bx:.

Example 5.1.6. Given an encoding over a state space S and a subset S’ C S, we have an induced
function fg : {0,1}" — {0,1} and a BDD Bgs. Similarly, a relation —C S x S has an induced
function f_, : {0,1}?" — {0,1} and a corresponding BDD B_,.

For efficiency reasons, the variable ordering over a relation where x = x1,...,2, and 2/ =
xh, ..., ! is given by the function f_ (x1,2},...,2n,2}) : {0,1}?" — {0, 1}.

We can also represent this specific kind of BDD by a 2" x 2™ matrix, such that given a BDD

M, we represent
M= <M|xi:0,x§:0 M|xi:0,x;:1>
M’%:Lx;:o M|mi:1,m;:

such that at the end of the sub-matrix process, we have the corresponding value obtained by f_,.

Repeated submatricies of the above form are represented by a shared BDD node (as they are
isomorphic). Simple matricies like Ion are represented by small BDDs (size 3n+1), and the constant
matrix is represented by 1 element.

Notation 5.1.7. We write 3z.B to mean Jz. fp which is defined to be f5[0/x]V fp[1/z], where we
equivalently write B|,—¢ and B|,—;. Conjunction and disjunction are equivalent to taking minimum
and maxmium.

Example 5.1.8. Consider

Sat(3 O ¢) = {s € S| Post(s) N Sat(¢) # 0}
= Pre(Sat(¢))

Now, Pre(T) = {s € S| 3s',s - s A s’ € T'}. Thus,
Lpre(r)(s) = 35'(15(s,8") Alp(s))

The induced map is
Jere(ry = For (f= A frla’/z])
Giving
fsat30¢) = Jar (f= A fsat(e) 2’ /2])

17

Example 5.1.9. Sat(3(¢1 U ¢2)) is the least fixpoint of the function

F(T) = Sat(¢2) U{s € Sat(¢1) | Post(s) NT # 0}
= Sat(¢2) U (Sat(¢1) N Pre(T))

The induced map is
Frer) = fsat(os) V Fsat(on) A 3w (f A frla’/z])
This induces a function between BDDs via
F(B) = BSat(¢>2) V (BSat(¢>1) A\ Pre(B))
which we can compute the least fixed point of.

Example 5.1.10. Suppose we have programs

process Flip; = while true do (if x; = x2 then x; := 1 - x;) od
process Flipy = while true do x9 := 1 - x9 od

And M = [[Flip, ||| Flip,]] = [[Flip,] ||| [Flip,]]. As an LTS, this is

(0,0) " (0,1)

| |

(1L,0) " (1,1)

Then, writing Briip, = (71 <> 22) A (2] <> —21) and By, = @5 <> —x2, we have that
By = (Briip, A Bra,) V (Briip, A Bra,)

Remark 5.1.11.

Program Matrix M,
LTS M » BDD By,
CTL Sat(¢)

We can transform programs and properties about programs into a BDD (which practically, we
hope are compact). The nice property is that then we can manipulate programs and sets at a time
over BDDs, and membership testing is simply a run through the BDD.

5.1.2 Bounded Model Checking

The basic idea is to unroll a model up to a fixed depth k, searching for counterexamples until this
depth, reducing model checking to SAT. This method is sound but incomplete on its own (as the
search size is limited).

18

Example 5.1.12. Consider the CTL formula Va. A finite path sq,...,s; such that s; satisfies
—a is a counterexample.
Consider the 2-bit counter:

|

(00) +—— (11)

L]

(01) —— (10)

We can encode states via two boolean variables x = zq, x1 corresponding to the values of the first
and second character on the state. Given two copies of variables x,z’, we have the translation
relation

T (z0, 21,20, 7)) = (mw9 A =21 A —2)=2)) V- -

where the first term corresponds to the transition from 00 to 01. Equivalently,
T (zo, 21,2, 7)) = (2 <> =(20 > 21)) A (2] < —21)

Let a be the statement that ‘the counter is less than 3’ Suppose now that we fix £ = 1. The
initial state is init(zo, 1) = —@o A —@1. The invariant is inv(zo, z1) = =(zo Az1) and inv' (2, 2}) =
=(z(, }). Then,

é1(xo, 71, T,) = (init A =inv) V (init A T A —inv')

is satisfiable if there exists a counterexample of length less at most 1. Extending this in the natural
way gives a way to write ¢, which is satisfied if and only if there is a counterexample of length at
most k.

Example 5.1.13. A counterexample for VQa is a finite path sq, ..., Sm, ..., s, for some m > 0 and
n > m such that s; all satisfy —a and s,, = s,.
Using notation from the previous example, assigning corresponding invariants,

¢1 = init A Ty A (z1 = x0) A —invg
where xg, x1 represent states, and equality is a conjunction of <» on each binary variable. Generally,

¢ = init A (TQ VANREIWAN Tk—l) VAN \/ (mk = xh) A (ﬁinvo VANRIERWAN —dnvk_l)
0<h<k

which represents a path of length &k that fails to satisfy the invariant.

Definition 5.1.14. A completeness threshold is an integer k for a CTL ¢ and LTS M such
that if there is no counterezample of length at most k, then M = ¢, which we write as M =y ¢.

Given a state s of M, we write s =y ¢ if there does not eixst a counterezample for ¢ of length
at most k starting at s.

In particular, k is a completeness threshold for M, ¢, if M = ¢ implies M = ¢. For instance,
the completeness threshold for Oa is 1.

Remark 5.1.15. |=; cannot be defined inductively as for normal CTL semantics (Proof??). s =i ¢
is in general not equivalent to s = —¢. For instance, s =9 3 a and s g =3 O a, as a path of
length 0 is not able to faisify claims that are completely about the future.

19

Proposition 5.1.16. Given a CTL formula YOa, d(M) is a completeness threshold. Similarly,
for a formula ¥Qa, rd(M) is a completeness threshold.

Proof. If there is a counterexample for Va, it must be due to —a on a reachable state from I. This
state is reachable with a path length at most d(M).

If there is a counterexample for VOa, we should find a finite path sq,..., s, that is always —a
and s, — s; for 0 < i < n. Given such counterexample, we can always shorten it to one which has
no duplicating states (is loop free). This is a counterexample of length at most rd(M).

The path of length rd(M) can visit O

Generally we have,

o CT(M,true) = CT(M,false) = CT(M,a) = CT(M,—a) =0

(
CT(M, o1 N ¢p2) = CT(M, 1 V ¢2) = max(CT(M, ®1), CT(M, (ﬁg))
o CT(M,30 ¢)=CT(M,YO¢)=1+CT(M,09)

« CT(M,3(d1U¢2)) = CT(M,V(¢1 U ¢2)) = rd(M) + CT(M, ¢2)

where CT(M, ¢) is the (canonical) completeness threshold for M and ¢. So one can always convert
a CTL to PNF and find the completeness threshold by computing the recurrence diameter.
The final one uses the fact that if there exists a path in which it is not the case that ¢, U ¢o,

5.2 LTL

Definition 5.2.1. A counterexample for a LTL formula ¥ on a LTS M is a sufficiently long
prefic of a path m of M with m = 1 which is sufficiently long to show m [~ .

Example 5.2.2. Some examples of counterexamples on LTL:
e A counterexample for (la is a finite path ending in —a
e A counterexample for Oa is a 2-state path ending in —a
e A counterexample for {a is a finite prefix of —a states followed by a single cylce of —a states
e A counterexample of A A B is a counterexample for A or B

e A counterexample for [Ja — [Jb is a finite prefix of a states followed by a single cycle of a
states (to show Ua) with one state where b is false (to show —[Jb).

Remark 5.2.3. If a linear-time property can be written as a regular language over 24 then there
is a NFA representation over 24F.

24PV s a regular safety property if

Definition 5.2.4. A regular safety property is a Psse C (

the language
{we 2°7)" | Vo € (2*7)“, wo ¢ Paago}

s reqular.

20

Example 5.2.5. Consider the NFA A,

()

—q0 — Q1

where ¢ is the accepting state, gy has label (), ¢; has label {fail}. Then the language by the NFA
is L(A) = {{fail}, O{fail}, @@{fail}, - - - }, which can translate to ‘finite traces where a failure occurs’.
This is the regular language that corresponds to the (minimal) bad prefixes of [J—fail.

Example 5.2.6. The regular safety property ‘at most 2 failures occur’ has a regular expression for
bad prefixes,
(—fail)* fail. (—fail)*.fail. (—fail)*.fail

Remark 5.2.7. Given an LTS M and a regular safety property Pisate,

M = Pafe <= Traces(M) C Page
<= Tracesg, (M) N BadPref(Paage) = 0

Given an NFA A representing the bad prefixes, we have
M = Pafe <= Tracesg (M) NL(A) =0

Definition 5.2.8. Given an LTS M = (S,Act,—,I,AP,L) and an NFA A = (Q,X%,6,Qo, F),
we can construct the product LTS of M and A, denoted M & A as the LTS (S x Q,Act,—’
I’ {accept}, L"), where

o I'={(s0,q) | so €I and qo — L(s0) — q for some qo € Qo }
o L'((s,q)) = {accept} if ¢ € F and empty otherwise

s—a-"sNqg—L(s") - ¢
° (57Q) —a - (S/7q/)

The intuition is that states correspond to (states in M — states in A), where a transition s — s’
on the LTS induces a transition on the NFA along the label L(s") (hence the requirement in the
initial states). The acceptance condition is that the induced path by the LTS reaches an accepting
state on A.

Consequently, we have

M E Pafe <= Tracesg, (M) NL(A) =0
<= M ® A |= O-accept

So model checking becomes a problem of reachability on graphs. Thus M [~ Py, if and only if
some path satisfies Qaccept in M ® A.

Definition 5.2.9. P C (247) is an w-regular property if P is an w-regular language over 2°F .
Lemma 5.2.10. Any regular safety property is an w-reqular property.

Lemma 5.2.11. Any LTL formula corresponds to an w-reqular property.

Definition 5.2.12. Given an LTS M and NBA A, the product denoted M ® A is the same object

as the construction with NFAs.

21

Remark 5.2.13. We have the relation,

M ¢ <= Traces(M) C Words(v)
<= Traces(M) N Words(—) =0
<= Traces(M) N Ly,(Ay) =10
<= there is no accepting path (cycle) in M ® A,
— M ® A= O0O-accept

That is, to model check an LTL formula ¢ on an LTS M, it is sufficient to check in the LTS-NBA-
product. Also, we can see that M [~ 9 if and only if there is some path that satisfies OQaccept in
M@ Ay.

Also note that this has structural similarity to checking regular safety properties on an LTS
with a NFA. Regular safety properties are definitionally a subclass of w-regular properties, and
many can be represented as an LTL. In that case, the same model checking works there.

There are a few methods to check this, like search for non-trivial SCCs containing the accepting
state, finding all accept states and DFS to find back edges, etc.

For a general LTL formula, we can convert to a GNBA, then to a corresponding NBA.

Lemma 5.2.14. For any LTL 1, there is a corresponding GNBA A.
Proof. Sketch. The states are sets of 1’s subformulae and their negations. O

Remark 5.2.15. The time complexity for LTL model checking is O(|M| - 2). Note that there
are LTL formulas ¢ whose NBA A_,; is of size O(2|w|), and checking for cycles can be done in linear
time.

5.3 Software Model Checking

Definition 5.3.1. A single static assignment (SSA) form is an intermediate representation of
programs such that every assignment of a variable uses a new xi, with the access of a variable using
the latest version. For convinience, we assume an initial value x0 for each variable.

Example 5.3.2. The program

X 1= 2 % y;
X 1= X % z;
X++;

b

converts to

xl := 2 % yO;
x2 := x1 * z0;
x3 := x2 + 1;

If we have conditionals, we write separate SSA code for each branch (with fresh names), and
resolve the branch afterwards. Assertions are predicated by guards.

Example 5.3.3. A code like

22

X 1= y;
if (x > z) {
X = x + 1;
assert x > y;
y=y+*y
} else {
X =X +7y;
assert x # y;

}

converts to
xl := yO0;
x2 :=x1 + 1;
assert(xl > z0) = (x2 > y0);
yl :=y0 + 1;
x3 := x1 + yO;
assert !(xl > z0) = (x3 # y0);
x4 := (x1 > z0) ? x2 : x3;
y2 := (x1 > z0) 7 y1 : yO;

From here, we convert to a CNF ¢ such that it can be satisfied if and only if a program execution
can violate an assertion. Specifically, one conjunctively equates every line (7") and conjuct that
with the negation of the assertion (invariant). Thus, ¢ = T'A —inv. Note that these equations are
not over boolean variables but predicates (of equality).

To check for satisfiability of formulae over predicates, we can use bit blasting (which converts
integers to binary, variables from predicates to boolean variables) and solve using the standard
SAT solver. Alternatively, we can use a satisfiability modulo theory (SMT) solver.

To convert from a program with loops, first simplify the program such that for loops are
converted to while loops, and structure becomes simpler (like changing breaks to gotos). Then, we
unwind loops to a fixed depth k. For instance, we can convert

while (condition) {
body
}

statements

into
if (condition) {

body
if (condition) {
body
assume (!condition);
+
}
statements

where the above is a case of 2 unwindings and replacing the while loop by a condition that blocks an
execution if conditions. Consequently, this is sound but not complete. To check for completeness,
we assert in the body that (!condition), as UNSAT implies there are no bugs. If the assertion is

23

violated, we may increase k.
The key is to mimic program execution symbolically, using symbols for unknown variables.

Definition 5.3.4. A execution tree or a computation tree is a binary tree where internal nodes
are branches (like if conditions) and leaf nodes are program exits, extracted from the control flow
graph.

The execution tree is typically infinite in size, but one can partially explore the execution tree.
Each control flow path (ending in the assertion) is executed symbolically, constructing the path
condition, appending the negation of the assertion to be checked. If the path condition is satisfiable,
then there is a assertion violation.

For instance, the code

void f(int x) {

int y = 0;

if (x >= 1000) {
y++;
x——;

}

if (x < 1000) {
y--;

}

assert(y !'= 0);
}

has 4 control paths, corresponding to branches in each if condition. Of course we can satisfy the
negation of the assertion when both conditions are true.

Program with loops have infinitely many paths, so there needs to be good heuristics to explore
paths.

6 Equivalence

6.1 Bisimulation

Definition 6.1.1. Let M; = (S;, —, Ii, AP, L;) be two LTS over the same atomic propositions for
i =1,2. Then, a bisimulation (between LTSs) is a binary relation R C Sy X Sy such that

o Vsy € I1,3s9 € Iy such that (s1,s2) € R and vice versa.

o For all (s1,s2) € R, L1(s1) = La(s2) and if s§ € Post(s1), then there exists a s, € Post(sz)
such that (s}, sh) € R and vice versa.

If such a relation exists, we write My ~ Ms and that My and Ms are bisimular.

Definition 6.1.2. Let M = (S, —,1,AP, L) be an LTS. A bisimulation (between states) over M
is a binary relation R C S x S such that for all (s1,s2) € R,

o Li(s1) = La(s2)
o if s} € Post(s1), then there exists s, € Post(sa) such that (s}, s5) € R and vice versa.

If such an R exists and (s1,s2) € R, we write s1 ~p; S2, and we say that s; and so are bisimular.

24

Definition 6.1.3. Given two bisimulation relations Ry and Rs, we say that Ry is coarser than
Rs (and that Ry is finer than R1) if s Re t = s Ry t for all s,t. Alternatively, we have that
Ry C R;.

Proposition 6.1.4. The union of two bisimulations Ry and Rs is a coarser bisimulation relation.
Proof. OoSN. O

Definition 6.1.5. Given a bisimulation R, the induced quotient space S/R = {[s|r | s € S}, where
[slr={s € S| (s,¢) € R}. Given M and R, the bisimulation quotient (system) is

M/R = (S/R,—)’,I’,AP,L’)
such that
e I'={slx|s €}

o L'([s]g) = L(s)

s — s
o [slr =" [$]r

Lemma 6.1.6. For any M and bisimulation R, M/R is bisimular to M.

Proof. OoSN. 0

Lemma 6.1.7. Let ~y; be the union of all bisimulations over M. Then M/ ~ys is the obtained
as the coarsest among all possible bisimulations R over M.

Proof. OoSN. O
We sometimes call this the bisimulation quotient for M.

Lemma 6.1.8. If My ~ Ma, then Traces(M;) = Traces(Ms).

Proof. The idea is that for any path in M; has a corresponding path in Ms that behaves identically
over any finite observation (by induction). We can sort-of extend this by a chain-completeness
argument. O

Corollary 6.1.9. Any bisimular LTSs satisfy the same linera-time properties.

Theorem 6.1.10 (Equivalence Results). * =traceC=LTL (Strictness requires infinite state
space)

o~y ==cTL*; bisimulation equivalence and CTL* equivalence coincides.
¢ =CTL==CTL*:
Proof. OoSN. 0

Remark 6.1.11. As a consequence of the second result, bisimulation preserves satisfaction of
CTL*, CTL, and LTL formulae. In particular, it suffices to model check on the quotient model,
for both M = ¢ and M [~ ¢. Also, given any s ~p s', s = ¢ and s [~ ¢ by any CTL formula

disproves bisimilarity.

25

Example 6.1.12. Consider two LTSs,

| |

N\
NN

which we have given labels directly on the state. Then the CTL formula

qb:HO(HOSQ/\HOSg)
is satisfied by the left but not by the right.

Remark 6.1.13. Checking whether R is a bisimulation relation is straightforward. Equivalence
checking (seeing whether M; and My are bisimular) can be reduced to a problem of finding the
bisimulation quotient of the disjoint union of LTSs M; and Ms, and ensuring that for any s; € I
we can find an s9 € Is such that s; ~ s9 and vice versa.

One algorithm to compute the bisimulation quotient of an LTS is as follows:

e start with the partition based on labelling
o repeatedly split state blocks that are not bisimilar
at termination, this gives the coarsest partition.

Example 6.1.14. Suppose there is some simple process who is composed in parallel 100 times.
The state space becomes exponential. However, without collapsing from this LTS, we can instead
count the number of processes in each local state via counting, choosing a representative via sorting
(by giving a order on local states). This gives a bisimular LTS that is significantly smaller, and is
easier to find the bisimulation quotient.

6.2 Simulation

Definition 6.2.1. Let M; = (S;, —, I;, AP, L;) be two LTS over the same atomic propositions for
i =1,2. Then, a simulation (between LTSs) is a binary relation R C Sy x S such that

o Vsy € I1,3s9 € Iy such that (s1,s2) € R.

o For all (s1,s2) € R, L1(s1) = La(s2) and if s| € Post(sy1), then there exists a s), € Post(sz)
such that (s}, sh) € R.

If such a relation exists, we write My = Mo and that My is simulated by M.

Example 6.2.2. Taking the LTSs from Example , we clearly have that the right side < left
side.

Definition 6.2.3. Let M = (S,—,I,AP,L) be an LTS. A simulation (between states) over M
is a binary relation R C S x S such that for all (s1,$2) € R,

26

« Li(s1) = La(s2)
o if s € Post(s1), then there exists s, € Post(sa) such that (s}, sh) € R.
If such an R exists and (s1,$2) € R, we write s1 <pr $2. This is naturally a preorder.

Definition 6.2.4. Let M be an LTS and A be a set of abstract states. Let f : S — A be an
abstraction function such that for all s,s' € S, f(s) = f(s') implies L(s) = L(s"). Then, define
the abstract LTS, written My to be

My = (A, =, I, AP, Ly)
such that
« Ij={f(s)[sel}
« Li(f(s)) = L(s)

s — 5

o f(s) =5 f(5)
Proposition 6.2.5. Let My be an abstract LTS of M. Then we have M =< M.

Remark 6.2.6. A could be a partition of S, but is not required. Note that there is a trivial f that
partitions based on the label.

Definition 6.2.7. Given abstraction functions f and f", f" refines f if
o foralls,t €S, fr(s) = fT(t) implies that f(s) = f(t)
o there exists s,t € S such that f"(s) # f"(t) and f(s) = f(t)

Definition 6.2.8. If LTS My, My satisfy My =< My and My =X My, we say that they are a
stmulation equivalence and that My ~ M.

Example 6.2.9. Simulation equivalence need not imply bisimularity. Consider the LTSs,

V)
[y

V2]
[y

where we show labels instead of states. This is clearly simulation equivalent but not bisimular.

Lemma 6.2.10. Simulation implies trace inclusion. That is,
M, < My = Traces(M;) C Traces(Ms)

In particular, if My < Ma, for any LT property P, My |= P implies My = P.

27

Definition 6.2.11. Let VCTL* be the positive normal fragments of CTL* without 3.
Lemma 6.2.12. Every safety property in CTL* is in VCTL*.
Lemma 6.2.13. For any YVCTL* formula ¢,

o M; =X My if and only if Mo = ¢ — My = ¢

o M ~ My if and only if My = ¢ < My = ¢

Corollary 6.2.14. Given LTS My, Ms such that My < Ms and a VCTL* formula such that My |= ¢
and M2 I;é gb, then M1 ;é MQ.

Remark 6.2.15. Considering YCTL* (positive normal fragments of CTL* without 3), we have

The CEGAR (counterexample-guided abstraction refinement) algorithm does the following,
given an LTS M and property ¢ (in LTL or V[CTL]*):

e Start with an abstraction M’
o Check M’ = ¢. If yes, return M = ¢

o Generate counterexample ¢ and try to map to M. If ¢ holds in M (symbolically mappable),
return M (= ¢

o Else, counterexample is ‘spurious,’” (or infeasible) so refine M’ based on the counterexample
and repeat.

The idea is that we start with an overapproximation and move towards smaller overapproxima-
tions by finding counterexamples in the overapproximation. We can implement this in a SAT-based
manner, which uses sat to model check M’ = ¢ and k-step SAT the counterexamples.

Example 6.2.16. Consider the LTS

| () Q)

M; = s1 SQQ My= — 8 — 59

I

and the initial abstraction My such that M; < M,. Suppose we want to test My = VOss. We have
a counterexample in My (consider t{'), but this is spurious, so refine Mo

()

M3 = > S1 S1 > S92

such that M; < Ms. Now Mj ': Vs so M, }: VO so.

28

Example 6.2.17. Consider

| () ()

M, = s1 SQD My= —— 351 —— 9

1}4 $9 Q

Then we have Mj (= V—s9 with counterexamples like sqs9 (slight abuse of notation, assuming we
know the original labels) or s1s1s2. The first is spurious but the latter is not.

29

	Automata
	Regular Language
	NFA
	Omega-regular expression
	Nondetermininstic Büchi automation

	Graph
	Binary Decision Diagram

	Logic
	Propositional Logic
	Normal Forms and Satisfiability

	Linear Temporal Logic
	Computation Tree Logic
	Positive Normal Form

	Labelled Transition Systems
	Basic Definitions
	Parallel Composition

	Linear Time Properties
	Classes of Linear Time Properties

	Semantics
	Over Propositional Logic
	Over LTL
	Over CTL

	CTL vs LTL
	CTL*

	Model Checking
	CTL
	Symbolic Model Checking via BDDs
	Bounded Model Checking

	LTL
	Software Model Checking

	Equivalence
	Bisimulation
	Simulation

