
Notes on CAFV
Apiros3

First Version : May 20, 2025
Last Update : May 20, 2025

Contents
1 Automata 2

1.1 Regular Language . 2
1.2 NFA . 2
1.3 Omega-regular expression . 2
1.4 Nondetermininstic Büchi automation . 3

2 Graph 4
2.1 Binary Decision Diagram . 4

3 Logic 5
3.1 Propositional Logic . 6

3.1.1 Normal Forms and Satisfiability . 6
3.2 Linear Temporal Logic . 7
3.3 Computation Tree Logic . 9

3.3.1 Positive Normal Form . 9

4 Labelled Transition Systems 9
4.1 Basic Definitions . 9

4.1.1 Parallel Composition . 11
4.2 Linear Time Properties . 11

4.2.1 Classes of Linear Time Properties . 12
4.3 Semantics . 13

4.3.1 Over Propositional Logic . 13
4.3.2 Over LTL . 13
4.3.3 Over CTL . 13

4.4 CTL vs LTL . 14
4.5 CTL* . 15

5 Model Checking 16
5.1 CTL . 16

5.1.1 Symbolic Model Checking via BDDs . 17
5.1.2 Bounded Model Checking . 18

5.2 LTL . 20
5.3 Software Model Checking . 22

6 Equivalence 24
6.1 Bisimulation . 24
6.2 Simulation . 26

1

1 Automata
1.1 Regular Language
- is closed under intersection and complement

1.2 NFA
Definition 1.2.1. A nondetermininstic finite automation (NFA) is a tuple A = (Q,Σ, δ,Q0, F)
where

• Q is a finite set of states

• Σ is an alphabet

• δ : Q× Σ → 2Q is a transition function

• Q0 ⊆ Q is a set of initial states

• F ⊆ Q is a set of accepting states

Definition 1.2.2. We define L(A) to be the set of finite whose run ends in an accept state. (TODO,
formally write)

Definition 1.2.3. NFAs A,A′ are equivalent if L(A) = L(A).

Lemma 1.2.4. A set of finite words L ⊆ Σ∗ is a regular language if L = L(A) for some finite
NFA A.

Proof. TODO.

Definition 1.2.5. We write A1 ⊗A2 for the (canonical) NFA that accepts L(A1) ∩ L(A2).

Remark 1.2.6. Given an NFA A, checking L(A) ̸= ∅ is equivalent to finding a path that can reach
a final state from any state in Q0, reducing the problem to graph reachability.

1.3 Omega-regular expression
Definition 1.3.1. An ω-regular expression over Σ is of the form

G = E1(F1)
ω + · · ·+ En(Fn)

ω

where Ei and Fi are regular expressions with ϵ /∈ L(Fi). Define Lω(G) ⊆ Σω to be the language
of an ω-regular expression, defined by

Lω(G) = L(E1)L(F1)
ω ∪ · · · ∪ L(En)L(Fn)ω

where
L(E)ω = {w1w2w3 · · · | wi ∈ L(E)}

Definition 1.3.2. L ⊆ Σω is an ω-regular language if L = Lω(G) for some ω-regular expression
G.

2

1.4 Nondetermininstic Büchi automation
Definition 1.4.1. A Nondetermininstic Büchi automation (NBA) is a tuple,

A = (Q,Σ, δ,Q0, F)

where

• Q is a finite set of states

• Σ is an alphabet

• δ : Q× Σ → 2Q is a transition function

• Q0 ⊆ Q is the set of initial sets

• F ⊆ Q is a set of accept states

Remark 1.4.2. The setup is the same as NFAs.

Definition 1.4.3. A run of an NBA A on an infinite word w = A0A1 · · · is a sequence of automata
states q0q1 · · · such that q0 ∈ Q0 and qi −Ai → qi+1 for all i ≥ 0.

An accepting run is a run with qi ∈ F for infinitely many i.
The language of A, denoted Lω(A) is the set of all infinite words accepted by A.

Example 1.4.4. Consider the NBA

q0 q1

¬a

a

¬a

a

where q1 is the only accepting state. Accepted words are exactly the words that accept a infinitely
often.

Example 1.4.5. Consider the NBA,

q0 q1

¬a∨b

a∧¬b

b

¬b

where q0 is the only accepting state. Then the accepted words are exactly those where b always
follows (could be same index) an a.

Lemma 1.4.6. NBAs are closed under intersection and complementation.

Lemma 1.4.7. NBAs are strictly more expressive than DBAs.

Definition 1.4.8. An NBA A = (Q,Σ, δ,Q0, F) is non-blocking if every symbol is available in
every state (δ(q, A) ̸= ∅ for all q ∈ Q and A ∈ Σ) In particular, every infinite word has a run
through A.

Proposition 1.4.9. NBAs can always be converted to a non-blocking NBA by adding a ‘trap’ state
that catches every non-used symbol and loops around the trap state.

3

Definition 1.4.10. A generalised nondetermininstic Büchi automata (GNBA) is an NBA with k
sets of accept states, where an element from each set must be visited infinitely often (the intersection
of states visited infinitely often with each set is nontrivial).

Lemma 1.4.11. Given any GNBA A, there is an NBA A′ that accepts the same words.

Proof. Sketch. Let F1, . . . , Fk be the set of accepting sets. Given an GNBA, construct an NBA
that is k copies of the GNBA such that we move between copies modulo k when accepting sets are
reached. Let the accepting states be the accepting states in the k-th copy, with the initial states
in the 1st copy. Then we visit accepting states infinitely often if and only if we visit elements of
F1, . . . , Fk each infinitely often.

2 Graph
2.1 Binary Decision Diagram
Definition 2.1.1. A binary decision tree is a graphical representation of boolean functions
(f(x1, . . . , xn) | {0, 1}n → {0, 1}) is a perfect binary tree of height n such that

• nodes at height n− i are laballed by boolean variables xi+1

• the two children have edges laballed 0 (dotted) and 1 (solid)

• leafs are labelled with 0 or 1, based on the value of f(x1, . . . , xn) with xi substituted with the
edge taken to reach the leaf.

We can merge isomorphic subtrees to make an DAG (direction is induced) with smaller repre-
sentation.

Definition 2.1.2. Fix any total orderig on the variables (the canonical one is induced by the
ordering on the tree). We say that the DAG is ordered if for any path along the DAG, variables
appear at most once each in the order. It is reduced, if

• Uniqueness: given two non-terminal nodes u, v, if var(u) = var(v), then(u) =
then(v), else(u) = else(v), then u = v, where var is the variable on the node, then and
else are the nodes reached by following 1 and 0 respectively.

• Non-redundant: for any non-terminal node u, then(u) ̸= else(u).

• Terminal nodes are merged

If the DAG is reduced and ordered, it is called a binary decision diagrams (BDD).

Remark 2.1.3. We can reduce heuristically reduce towards a BDD by the following techniques:

• Merge isomorphic nodes (including terminal ones)

• Remove redundant nodes (with identical children)

Theorem 2.1.4. Given a fixed ordering on the variables, for any propositional formula ϕ, there
exists a unique BDD equivalent to ϕ.

Proof. OoSN.

4

Corollary 2.1.5. Given a fixed ordering on the variables, two boolean functions are equivalent if
and only if the reduced, ordered BDDs are isomorphic.

Proof. Follows immediately from the previous theorem.

Proposition 2.1.6. Given a BDD, satisfiability checking, tautology checking are both constant time
problems.

Proof. A BDD represents a satisfiable boolean function if there are any edges into 1 (or the 1 leaf
exists). It is a tautology if there are no edges into 0 (or the 0 leaf does not exist).

Proposition 2.1.7. Equality checking of BDDs can be done in linear time.

Proof. OoSN.

Example 2.1.8. Consider the DNF,

f = (x1 ∧ y1) ∨ · · · ∨ (xn ∧ yn)

The interleaved ordering x1 < y1 < · · · < xn < yn gives a BDD of size 2n+2, whereas the ordering
x1 < · · · < xn < y1 < · · · < yn gives a BDD of size 2n+1.

Theorem 2.1.9. Finding the ordering that gives the minimal BDD size is NP-complete.

Proof. OoSN.

Given BDDs (with some fixed ordering), that represents a boolean function, we can give BDDs
that represent negation, conjunction, and disjunction. Negation is simply replacing the children
out of each node with one-another.

Example 2.1.10. Given BDDs that represent boolean functions A and B, we can give a BDD
that represents A∨B (and similar for conjunction) in O(|A||B|) time. The algorithm is as follows:

1. Start with the pair of root nodes in A and B. Recursively do the following:

2. Pick the smaller variable of the pair, and draw an edge to the pair that corresponds to
substitution of 0 and 1. Recursively apply the process on the new pair.

The label on terminal nodes (u, v) is simply var(u) ∨ var(v) (or ∧ if conjunction). The resulting
BDD needs to be reduced, but this can be done as part of the recursive operation by implementing
the reduction rules in a bottom-up fashion.

When implementing BDDs, one can do so efficiently (memory-wise) by making a multi-rooted
BDD such that there are no duplicate BDD subtrees accross multiple BDDs. Whenever a new node
is created, check for existence first (if exists, attach to that). BDD equality becomes trivial by a
simple pointer comparison.

Thus, set of states can be implemented by bit vectors and hashing, whereas transition relations
are represented by a sparse adjacency matrix.

3 Logic
To add: up to logic, σ ̸|= ψ is equivalent σ |= ¬ψ

5

3.1 Propositional Logic
Definition 3.1.1. Propositional logic formulas are spanned by

ϕ ::= true | false | a | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

where a ∈ AP is an atomic proposition.

Often we give a slightly more minimal set of grammars,

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ

As then we have the logical equivalences

• false ≡ ¬true

• ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2)

• ϕ1 → ϕ2 ≡ ¬ϕ1 ∧ ϕ2

• ϕ1 ⇐⇒ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

• ϕ1 ⊕ ϕ2 ≡ (ϕ1 ∧ ¬ϕ2) ∨ (¬ϕ1 ∧ ϕ2)

3.1.1 Normal Forms and Satisfiability

Definition 3.1.2. Let ϕ be a propositional logic formula over boolean variables x1, . . . , xn. We say
that ϕ is satisfiable if there exists a valuation of x1, . . . , xn such that ϕ(x1, . . . , xn) evaluates to
true.

Theorem 3.1.3 (Cook’s Theorem). Checking satisfiability is NP-complete.

Proof. todo.

Definition 3.1.4. Let ϕ is a tautology if ϕ(x1, . . . , xn) evaluates to true for every valuation of
x1, . . . , xn.

Theorem 3.1.5. Tautology checking is co-NP-complete.

Definition 3.1.6. A formula ϕ is in conjunctive normal form (CNF) if ϕ =
∧∨

ℓij where ℓij
is a literal of the form xk or ¬xk.

Lemma 3.1.7. Any boolean formula is equivalent to a CNF-formula.

Proof. Use de Morgan, double negation, and distributivity.

Proposition 3.1.8. Tautology checking of a formula in CNF is in P.

Proof. Tautology checking for a ϕ in CNF is equivalent to tautology checking each conjunctive
clause. One can tautology check each clause by seeing if for every literal, it’s opposite literal is also
in it.

Definition 3.1.9. A formula ϕ is in disjunctive normal form (DNF) if ϕ =
∨∧

ℓij where ℓij
is a literal of the form xk or ¬xk.

Lemma 3.1.10. Any boolean formula is equivalent to a DNF-formula.

6

Proof. Use de Morgan, double negation, and distributivity.

Proposition 3.1.11. Satisfiability checking of a formula in DNF is in P.

Proof. SAT checking reduces to seeing if any clause is satisfied. For every clause, we check that no
literal has both a positive and negative occurence, and this is equivalent to SAT checking.

Proposition 3.1.12. Tautology checking of a formula in DNF is in co-NP-complete.

Proof. OoSN.

Example 3.1.13. For a DNF size O(n), the equivalent CNF can be size Ω(2n). Consider (x1 ∧
y1) ∨ · · · ∨ (xn ∧ yn). It’s CNF needs to cover every 2n possibilities of satisfiability.

Definition 3.1.14. A formula ϕ is in if-then-else normal form (INF), if

ϕ ::= 1 | 0 | x→ ϕ, ϕ

where x is a boolean variable and x→ ϕ1, ϕ2 ≡ (x ∧ ϕ1) ∨ (¬x ∧ ϕ2).

Theorem 3.1.15 (Shannon’s expansion theorem). For every Boolean formula ϕ and variable x,
ϕ ≡ x→ ϕ[1/x], ϕ[0/x].

Proof. OoSN.

Corollary 3.1.16. Any Boolean formula is equivalent to one in INF.

Proof. Immediate consequence of Shannon’s expansion theorem, after substitution into all variables
it should reduce to a 1 or 0.

Alternatively, one may simply prove this through structural induction.

3.2 Linear Temporal Logic
Definition 3.2.1. Linear Temporal Logic (LTL) formulas ψ is defined by the grammar

ψ ::= true | a | ψ ∧ ψ | ¬ψ | ⃝ψ | ψ ∪ ψ

The temporal operators mean the following:

• ⃝ψ means that ψ is true in the next state

• ψ1 ∪ ψ2 means that ψ2 is eventually true and ψ1 is true until then

Notation 3.2.2. Given a word σ ∈ (2AP)ω, we can write σ = A0A1A2 · · · . We write σ[j] = Aj
and σ[j...] = AjAj+1Aj+2 · · ·

We write semantics as follows:

• σ |= true is always true

• σ |= a if and only if a ∈ σ[0]

• σ |= ψ1 ∧ ψ2 if and only if σ |= ψ1 and σ |= ψ2

• σ |= ¬ψ if and only if σ |= ψ

7

• σ |= ⃝ψ if and only if σ[1...] |= ψ

• σ |= ψ1 ∪ ψ2 if and only if there exists k ≥ 0 such that σ[k...] |= ψ2 and for all i < k,
σ[i...] |= ψ1

Definition 3.2.3. LTL formulae ψ1, ψ2 are equivalent, written ψ1 ≡ ψ2 if they are satisfied by
the exact same ω-word (in 2AP). That is, σ |= ψ1 if and only if σ |= ψ2.
Definition 3.2.4. We define Words(ψ) = {σ ∈ (2AP)ω | σ |= ψ}.
Remark 3.2.5. By simple rewriting, we have that ψ1 ≡ ψ2 if and only if Words(ψ1) = Words(ψ2).
Lemma 3.2.6. ψ1 ≡ ψ2 if and only if for any LTS M , M |= ψ1 ⇐⇒ M |= ψ2

Proof. OoSP. (Not trivial, check ltr) (apparently standard automata‐theoretic filtration argu-
ment??)

The operators are powerful enough to talk about additional operators:
• Eventually ψ : ♢ψ ≡ true ∪ ψ

• Always ψ : □ψ ≡ ¬(true ∪ ¬ψ)
Notation 3.2.7. We have alternative syntax:

• ⃝a ≡ X a

• ♢a ≡ F a

• □a ≡ G a

Lemma 3.2.8 (Distributivity). We have the following distributivity laws
⃝(ψ1 ∨ ψ2) ≡ (⃝ψ1) ∨ (⃝ψ2), ⃝(ψ1 ∧ ψ2) ≡ (⃝ψ1) ∧ (⃝ψ2), ⃝(ψ1 ∪ ψ2) ≡ (⃝ψ1) ∪ (⃝ψ2)

□(ψ1 ∧ ψ2) ≡ □ψ1 ∧□ψ2, ♢(ψ1 ∨ ψ2) ≡ ♢ψ1 ∨□ψ2,

ψ1 ∪ (ψ2 ∨ ψ3) ≡ (ψ1 ∨ ψ2) ∪ (ψ1 ∨ ψ3), (ψ1 ∧ ψ2) ∪ ψ3 ≡ (ψ1 ∪ ψ3) ∧ (ψ2 ∪ ψ3)

Proof. Straightforward.

Lemma 3.2.9 (Duality / Negation Propagation). We have the following dualities
¬⃝ ψ ≡ ⃝¬ψ ¬□ψ ≡ ♢¬ψ ¬♢ψ ≡ □¬ψ

Proof. Straightforward.

Lemma 3.2.10 (Other Properties). We also note idempotency and expansion laws:
□□ψ ≡ □ψ ♢♢ψ ≡ ♢ψ

ψ1 ∪ ψ2 ≡ ψ1 ∪ (ψ1 ∪ ψ2) ψ1 ∪ ψ2 ≡ ψ1 ∨ (ψ1 ∧⃝(ψ1 ∪ ψ2))

□ψ ≡ ψ ∧⃝□ψ ♢ψ ≡ ψ ∨⃝♢ψ
Proof. Straightforward. (At least in the cafv course, the standard equivalence we use is ♢a ≡ ¬□¬a
and □a ≡ ¬♢¬a)

Remark 3.2.11. Proofs for all of the above are straightforward, by using the fact that A ≡ B if
and only if for all σ, σ |= A ⇐⇒ σ |= B, or using known equivalences.
Example 3.2.12. We will show:

□♢a ∧□♢b ̸≡ □♢(a ∧ b)
As the word {a}{b}{a}{b} · · · is satisfied only by the left.

8

3.3 Computation Tree Logic
If LTL was based on a time-linear system, CTL is the version which deals with branching to
different paths over time. Intuitively, linear time paths have a chosen path to model over, whereas
computation trees have branching that can be ‘chosen’ afterwards.

Definition 3.3.1. A computation tree logic (CTL) formula is a state formula ϕ given by

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | ∀ψ | ∃ψ

where
ψ ::= ⃝ϕ | ϕ ∪ ϕ | ♢ϕ | □ϕ

Note that temporal operators are paired with quantifiers.

Notation 3.3.2. We can write ∀ψ ≡ A ψ and ∃ψ ≡ E ψ.

Definition 3.3.3. The release operator ϕ1Rϕ2 corresponds to ‘ϕ2 always holds, but is no longer
required after ϕ1 holds’. That is, π |= ϕ1Rϕ2 if either π[j] |= ϕ2 for all j ≥ 0, or there exists a i ≥ 0
such that π[i] |= ϕ1 and π[k] |= ϕ2 for all k ≤ i.

Proposition 3.3.4 (Release is the dual of until). We have that ϕ1Rϕ2 ≡ ¬(¬ϕ1 ∪ ¬ϕ2) and
¬(ϕ1 ∪ ϕ2) ≡ ¬ϕ1R¬ϕ2.

3.3.1 Positive Normal Form

Definition 3.3.5. A CTL formula is in positive normal form (PNF) if negation is applied
only to atomic propositions.

Lemma 3.3.6. Any CTL formula can be converted to an equivalent formula in PNF.

Proof. We push negation inside inductively by using duality.

4 Labelled Transition Systems
4.1 Basic Definitions
States represent possible configurations of systems, whereas transitions represents possible ways
the system can evolve.

Definition 4.1.1. A labelled transition system (LTS) is a tuple (S,Act,→, I,AP, L) where

• S is a set of states (state space)

• Act is a set of actions

• →⊆ S ×Act× S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labelling function

9

Essentially is a directed graph where vertices represent states and edges represent transitions.
States are represented using atomic propositions in AP, which represent facts about each state.

Transitions are labelled with actions.
Definition 4.1.2. An LTS is finite if S, Act, AP are all finite.
Notation 4.1.3. We write s− α � s′ if (s, α, s′) ∈→ and s � s′ if s− α � s′ for some α
Definition 4.1.4. We define Post(s, α) = {s′ ∈ S | s− α � s′} and Post(s) =

∪
α∈Act Post(s, α).

Similarly, Pre(s, α) = {s′ ∈ S | s′ − α � s} and Pre(s) =
∪
α∈Act Pre(s, α).

A state s is called terminal if Post(s) = ∅.
Terminal states often represent termination of a program or error / undesired behavior like

deadlock.
Definition 4.1.5. A path is an alternating sequence s0α0s1α1s2α2 · · · such that s1 − αi � si+1.

A finite path or a path fragment is a finite prefix of a path, ending in a state.
Definition 4.1.6. A state s′ is reachable from s if there exists a finite path from s to s′. s is
called a reachable state if it is reachable from some s0 ∈ I.
Notation 4.1.7. We write Aω to be A(Aω).
Remark 4.1.8. Post∗(s) is the set of states reachable from s, and Pre∗(s) is the set of states that
can reach s.

As notation, we write Post∗(C) =
∪
s∈C Post∗(s) for a set C ⊆ S and Similarly for Pre.

Given an LTS M , we write Reach(M) = Post∗(I)

Example 4.1.9. A program can be modelled using an LTS by a set of tuples that represent the
location (in code) and what the variables are.
Remark 4.1.10. LTS exhibits nondeterminism, as we can have an unknown system environment
(like user input), abstraction (omitting detail like probability of success), underspecification, or
concurrency. This is seen as nondeterminism over the choice of transition in each state and the
choice of initial state.
Definition 4.1.11. The distance δ(s, t) from a state s to state t in LTS M is the length of the
shortest path between them. That is,

δ(s, t) = min{n | ∃s0, . . . , sn, s0 = s ∧ sn = t ∧ ∀0 ≤ i < n, si → si+1}

where min ∅ = ∞.
Definition 4.1.12. The diameter d(M) of a LTS M is the maximal length of a path to any state.
That is,

d(M) = max{d(t) | d(t) ̸= ∞∧ t ∈ S}
where

d(t) = min{δ(s, t) | s ∈ I}

Definition 4.1.13. The recurrence diameter rd(M) of a LTS M is the longest loop-free path.
That is,

rd(M) = max{n | ∃s0, . . . , sn, s0 ∈ I ∧ ∀0 ≤ i < n, si → si+1 ∧ ∀0 ≤ i < n, ∀i < j ≤ n, si ̸= sj}

Note that each value can be computed symbolically with a SAT solver.
Proposition 4.1.14. For any LTS M , rd(M) ≥ d(M).
Proof. Straightforward. Any minimal path to a state us a loop-free path.

10

4.1.1 Parallel Composition

Definition 4.1.15 (Composition of LTS). Let M1 and M2 be two LTSs, where Mi = (Si,Acti,→i

, Ii,APi, Li). We define interleaving M1|||M2 as the LTS

M1|||M2 := (S1 × S2,Act1 ∪Act2,→, I1 × I2,AP1 ∪AP2, L)

where L((s1, s2)) = L(s1) ∪ L(s2) for any s1 ∈ S1 and s2 ∈ S2, and → is defined such that
s1 − α �1 s

′
1

(s1, s2)− α � (s′1, s2)

s2 − α �2 s
′
2

(s1, s2)− α � (s1, s
′
2)

Example 4.1.16. Consider parallel composition over programs that have shared access to some
variable,

[x := x+ 1]|||[y := 2 ∗ x]
Nondeterminism models competition between these variables (with two branches representing the
different cases of who won)
Definition 4.1.17. Synchronisation between parallel components M1, M2 is M1||HM2 for a set
H ⊆ Act of handshake actions such that synchronisation happens only on those actions. Explicitly,

M1||HM2 = (S1 × S2,Act1 ∪Act2,→, I1 × I2,AP1 ∪AP2, L)

where → is defined as
s1 − α �1 s

′
1 ∧ s2 − α �2 s

′
2

(s1, s2)− α � (s′1, s
′
2)

α ∈ H
s1 − α �1 s

′
1

(s1, s2)− α � (s′1, s
′
2)
α /∈ H

s2 − α �2 s
′
2

(s1, s2)− α � (s′1, s
′
2)
α /∈ H

4.2 Linear Time Properties
For this section we assume LTSs are finite and have no terminal states (such that all maximal paths
are infinite).
Definition 4.2.1. We define the trace of a path π = s0s1 · · · to be the sequence of atomic propo-
sitions true in each state, written trace(π) = L(s0)L(s1) · · ·

Notation 4.2.2. We write Paths(M) to be the set of all paths starting from an initial state in I.
We also write Traces(M) for the set of all traces of those paths.
Definition 4.2.3. A linear-time (LT) property is a subset of (2AP)ω

Definition 4.2.4. A satisfaction M |= P of an LT property P by an LTS M , or M satisfies P
when Traces(M) ⊆ P .
Example 4.2.5. The property P : “the traffic lights never both show green1 and green2 simulta-
neously” is written as

P = {A0A1A2 · · · ∈ (2AP)ω | Aj /∈ {green1, green2}for all j ≥ 0}

Definition 4.2.6. M and M ′ are trace equivalent if Traces(M) = Traces(M ′) Similarly, M is
a trace inclusion of M ′ if Traces(M) ⊆ Traces(M ′).
Proposition 4.2.7. We have

• M and M ′ are trace equivalent if and only if for any LT property P , M ′ |= P ⇐⇒ M |= P

• M is a trace inclusion of M ′ if and only if for any LT property P , M ′ |= P =⇒ M |= P .
Proof. Straightforward.

11

4.2.1 Classes of Linear Time Properties

Definition 4.2.8. Pinv ⊆ (2AP)ω is an invariant if there is a prositional logic formula ϕ such that
Pinv = {A0A1A2 · · · ∈ (2AP)ω | Aj |= ϕ for all j ≥ 0}

It is a condition about states that must always be true, and hence can be checked in each state
separately.

Checking invariants can be done via reachability. Specifically, we have
Proposition 4.2.9. The following are equivalent:

• M |= P

• for all π ∈ Paths(M), Trace(π) ∈ P

• for all π ∈ Paths(M), ∀s ∈ π, L(s) |= ϕ

• for all s ∈ Reach(M), L(s) |= ϕ

Proof. Straightforward.

Remark 4.2.10. As LTSs are finite, we can check reachability and check that L(s) |= ϕ to
determine if M |= P in finite time.
Definition 4.2.11. Psafe ⊆ (2AP)ω is a safety property if for all words σ ∈ (2AP)ω \ Psafe, there
is a finite prefix σ′ of σ such that

Psafe ∩ {σ′′ ∈ (2AP)ω | σ′ is a prefix of σ′′} = ∅

In particular, it is a property such that if there is a violation, there is a finite prefix (evidence)
such that every infinite path extending the finite prefix does not satisfy Psafe.
Remark 4.2.12. Invariants are safety properties, but the converse is not true. In the former, given
that the invariant is established by ϕ, then the set of ‘bad’ prefixes are of the form A0A1 · · ·An
such that Ai ̸|= ϕ (and is a word that is a prefix of an element of a path).

The latter is clearly not true, by considering sequences that depend on where it came from (e.g.,
green1 always appears before green2).
Definition 4.2.13. Given a trace σ ∈ (2AP)ω, define

pref(σ) = {σ′ ∈ (2AP)∗ | σ′ is a finite prefix of σ}
and standard overloading to a linear time property P . Also, take

closure(P) = {σ ∈ (2AP)ω | pref(σ) ⊆ pref(P)}

Proposition 4.2.14. Given a LT property P , P is a safety property if and only if closure(P) = P .
Proof. Intuition: Things in the closure cannot act as ‘evidence’ against nonmembership. We always
have closure(P) ⊇ P , and if we have σ ∈ closure(P) \ P , by safety, we have a finite prefix of σ,
say σ′ that acts as evidence. Now, every extension of σ′ is not in P , which contradicts the fact
σ′ ∈ pref(P).

If P is not safe, the element which contradicts the safety property is exactly what we use to
show strict inclusion.

Definition 4.2.15. Plive ⊆ (2AP)ω is a liveness property if for all finite word σ ∈ (2AP)∗, there
exists an infinite word σ′ ∈ (2AP)ω such that σσ′ ∈ Plive.
Proposition 4.2.16. P is live if and only if the pref(Plive) = (2AP)∗

Proof. Clear.

12

4.3 Semantics
4.3.1 Over Propositional Logic

Definition 4.3.1. Given a state s on a LTS M , we write s |= ϕ if the model that assigns only
elements of L(S) to be true derives ϕ

4.3.2 Over LTL

Definition 4.3.2. Given an LTSM , it satisfies an LTL formula ψ if for all paths, its trace satisfies
ψ. That is, M |= ψ if for all π ∈ Paths(M), trace(π) |= ψ.

Then M |= ψ if and only if Traces(M) ⊆ Words(ψ)

Lemma 4.3.3. LTL can represent invariants, safety properties, and liveness properties. Moreover,
every invariant can be represented as □ϕ for some propositional formula ϕ

Proof. OoSN.

Example 4.3.4. □(receive → ⃝ack) is a safety property that says “ack always immediately follows
receive”. ♢ϕ, □♢ϕ are both liveness properties.

Remark 4.3.5. M |= ¬ψ implies M ̸|= ψ (assuming nonempty trace) but not the other way
around. This is a direct consequence of the fact that to not model only requires evidence of the
negation by one trace, where as a model of the negation requires that it is not true in every trace.

LTLs can model existence well in the sense that it can verify M ̸|= A by exhibiting a trace that
satisfies ¬A. However, it cannot verify things that talk about ‘every’ execution.

Proposition 4.3.6. M |= ψ if and only if Traces(M) ∩Words(¬ψ) = ∅

Proof. Clear.

Remark 4.3.7. This equivalence allows the generation of counterexamples in LTL.

4.3.3 Over CTL

Definition 4.3.8. Given a state s of an LTS M = (S,Act,→, I,AP, L), we have for states,

• s |= true is always true

• s |= a if and only if a ∈ L(s)

• s |= ϕ1 ∧ ψ2 if and only if s |= ϕ1 and s |= ϕ2

• s |= ¬ϕ if and only if s ̸|= ϕ

• s |= ∀ψ if and only if forall π ∈ Paths(s), π |= ψ

• s |= ∃ψ if and only if for some π ∈ Paths(s), π |= ψ

and for paths,

• π |= ⃝ϕ if and only if π[1] |= ϕ

• π |= ϕ1 ∪ ϕ2 if and only if ∃k ≥ 0 such that π[k] |= ϕ2 and for all i < k, π[i] |= ϕ1

Then, we write M |= ϕ if for all s0 ∈ I, we have s0 |= ϕ

13

Definition 4.3.9. ϕ1 and ϕ2 are equivalent, written ϕ1 ≡ ϕ2 if for any state s of any LTS M ,
s |= ϕ1 ⇐⇒ s |= ϕ2

Lemma 4.3.10 (Path quantifier duality). We have

∀ψ ≡ ¬∃¬ψ ∃ψ ≡ ¬∀¬ψ

4.4 CTL vs LTL
Definition 4.4.1. A CTL formula ϕ and LTL formula ψ are equivalent if for any LTS M ,

M |= ϕ ⇐⇒ M |= ψ

Lemma 4.4.2. There are formulae in LTL that cannot be expressed in CTL. Specifically, ♢□a has
no equivalent formula in CTL.

Example 4.4.3. We have ∀♢∀□a ̸≡ ♢□a. Consider the LTS,

s0 s1 s2

where s0 and s2 have labels {a}. Every path of this LTS is of the form s0s0 · · · or s0s0 · · · s0s1s2 · · · ,
both of which satisfy ♢□a. On the other hand, considering the path s0s0 · · · , we clearly don’t have
♢∀□a, as the secondary path may fall to s2 through s1.

Lemma 4.4.4. There are formulae in CTL that cannot be expressed in LTL. Speficially, ∀□∃♢a
cannot be expressed in a LTL.

Proof. Suppose there exists a LTL formula ψ equivalent to ∀□∃♢a. Consider the LTS M defined
by,

s0 s1

where the label for s1 is {a} and empty otherwise. Note that we haveM |= ∀□∃♢a. By equivalence,
we have M |= ψ, such that Traces(M) ⊆ Words(ψ).

Now consider the LTS M ′ defined by

s0

with labels to the emptyset such that Traces(M ′) ⊆ Traces(M). We therefore have M ′ |= ψ.
However, M ′ ̸|= ∀□∃♢a, a contradiction.

Remark 4.4.5. Expressiveness of CTL and LTL are incomparable. The key difference is that
CTLs is a branching time, state-based logic, whereas LTLs are a linear-time, path-based model.

Theorem 4.4.6. Let ϕ be a CTL and ψ be the LTL obtained by removing the quantifiers from ϕ.
Then ϕ ≡ ψ or there exists no LTL formula equivalent to ϕ.

Proof. Check PoM Thm 6.18, no proof given.

14

4.5 CTL*
Definition 4.5.1. CTL* formulae are ϕ defined on states formulas

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | ∀ψ | ∃ψ

where path formulas are

ψ ::= ϕ | ψ ∧ ψ | ¬ψ | ⃝ψ | ψ ∪ ψ | ♢ψ | □ψ

This is a superset of CTL and LTL, where we can have nested temporal operators.

Definition 4.5.2. We give semantics on states s of an LTS M = (S,Act,→, I,AP, L) with

• s |= true is always true

• s |= a if and only if a ∈ L(s)

• s |= ϕ1 ∧ ϕ2 if and only if s |= ϕ1 and s |= ϕ2

• s |= ¬ϕ if and only if s ̸|= ϕ

• s |= ∀ψ if and only if for all π ∈ Path(s), π |= ψ

• s |= ∃ψ if and only if there exists some π ∈ Path(s) such that π |= ψ

and for a path π,

• π |= ϕ if and only if π[0] |= ϕ

• π |= ψ1 ∧ ψ2 if and only if π |= ψ1 and π |= ψ2

• π |= ¬ψ if and only if π ̸|= ψ

• π |= ⃝ψ if and only if π[1...] |= ψ

• π |= ψ ∪ ψ2 if and only if there exists a k ≥ 0 such that π[k...] |= ψ2 and for all i < k,
π[i...] |= ψ1.

Definition 4.5.3. CTL* formulae ϕ1 and ϕ2 are equivalent if for all LTS M , we have

M |= ϕ1 ⇐⇒ M |= ϕ2

Example 4.5.4. Given an LTS M , we can have M ̸|= ϕ and M ̸|= ¬ϕ. Consider ϕ = ∃□a such
that ¬ϕ = ¬∃□a ≡ ∀♢¬a.

s0 s1 s2

where labels on s0 and s2 are {a} and empty otherwise. The consequence is due to the propositions
needing to be satisfied by all initial states. ϕ is not satisfied by the path starting from s2, and ¬ϕ
is not satisfied by the path starting from s0.

Definition 4.5.5. Any two states s1 and s2 are CTL* equivalent, written s1 ≡CTL∗ s2, if
s1 |= ϕ ⇐⇒ s2 |= ϕ for all CTL* formulas ϕ. Similarly, two LTSs M1 and M2 are CTL*
equivalent, written M1 ≡CTL∗ M2

Remark 4.5.6. This notion then induces LTL-equivalences and CTL-equivalences.

15

5 Model Checking
5.1 CTL
Definition 5.1.1. A witness for a CTL formula ∃ψ on a LTS M is a sufficiently long prefix of
a path π of M with π |= ψ such that it shows how ψ can be true.

A counterexample for a CTL formula ∀ψ on a LTS M is a sufficiently long prefix of a path
π of M with π ̸|= ψ (a witness for ¬ψ).

Definition 5.1.2. We define Sat(ϕ), called the satisfaction set for the CTL formula ϕ as

Sat(ϕ) := {s ∈ S | s |= ϕ}

Definition 5.1.3. Existential Normal Form (ENF) for a CTL is a formula with no ∀ and no ∃♢.

Lemma 5.1.4. Every formula has an equivalent formula in ENF.

Proof. Sketch. Every ∀ can be removed using the path quantifier duality, ∀ψ ≡ ¬∃¬ψ (where we
use duality again on the temporal operator immediately.)

We also have that ♢ and □ are derived operators (or simply take the dual), and that,

• ∃♢ϕ ≡ ∃(true ∪ ϕ)

• ∀⃝ ϕ ≡ ¬∃⃝¬ϕ

• ∀(ϕ1 ∪ ϕ2) ≡ ¬∃(¬ϕ2 ∪ (¬ϕ1 ∧ ¬ϕ2)) ∧ ¬∃(□¬ϕ2)

Now, to check whether M |= ϕ, we want to see if s |= ϕ for all initial states s ∈ I. It is therefore
sufficient to check that I ⊆ Sat(ϕ). We can compute Sat(ϕ) recursively on ϕ. Writing ϕ in ENF,
we have

• Sat(true) = S

• Sat(a) = {s ∈ S | a ∈ L(s)}

• Sat(ϕ1 ∧ ϕ2) = Sat(ϕ1) ∩ Sat(ϕ2)

• Sat(¬ϕ) = S \ Sat(ϕ)

• Sat(∃⃝ ϕ) = {s ∈ S | Post(s) ∩ Sat(ϕ) ̸= ∅}

• Sat(∃(ϕ1 ∪ ϕ2)) = CheckExistsUntil(Sat(ϕ1), Sat(ϕ2))

• Sat(∃□ϕ) ≡ CheckExistsAlways(Sat(ϕ))

We compute Sat(∃(ϕ1∪ϕ2)). Start from T := Sat(ϕ2), compute the least fixed point of F (T) =
T ∪ {s ∈ Sat(ϕ1) | Post(s) ∩ T ̸= ∅}, effectively adding predecessors of states in T that satisfy ϕ1.
This is based on the idea that ∃(ϕ1 ∪ ϕ2) ≡ ϕ2 ∨ (ϕ1 ∧ ∃⃝ ∃(ϕ1 ∪ ϕ2)).

In a similar fashion, we can compute Sat(∃□ϕ) given Sat(ϕ) by taking the expansion law

∃□ϕ ≡ ϕ ∧ ∃⃝ ∃□ϕ

16

Then starting with T := Sat(ϕ), we can take the greatest fixed point of the function F (T) =
T ∩ {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}. Alternatively, model checking on ∃□ϕ is essetially elements
along paths that end up on strongly connected components of the subgraph induced by ϕ.

Given a LTS M and CTL formula ϕ, determining M |= ϕ is in O(|M | · |ϕ|). where |M | is the
number of states + number of transitions (size of graph) and |ϕ| is the number of operators in
ϕ. The worst case is given when all operators are temporal operators where each requires a single
traversal of the whole model.

5.1.1 Symbolic Model Checking via BDDs

Definition 5.1.5. Suppose we have an encoding of X into n Boolean variables (in particular, this
is always possible for a finite set X). Consider a state space X and a subset X ′ ⊆ X. We define a
characteristic function 1X′ : X → {0, 1} to be the function that maps to 1 if and only if x ∈ X ′.
Then, 1X′ induces a function fX′(x1, . . . , xn) : {0, 1}n → {0, 1}. Then, fX′ can be represented by a
corresponding BDD, which we write BX′.

Example 5.1.6. Given an encoding over a state space S and a subset S′ ⊆ S, we have an induced
function fS′ : {0, 1}n → {0, 1} and a BDD BS′ . Similarly, a relation →⊆ S × S has an induced
function f→ : {0, 1}2n → {0, 1} and a corresponding BDD B→.

For efficiency reasons, the variable ordering over a relation where x = x1, . . . , xn and x′ =
x′1, . . . , x

′
n is given by the function f→(x1, x

′
1, . . . , xn, x

′
n) : {0, 1}2n → {0, 1}.

We can also represent this specific kind of BDD by a 2n × 2n matrix, such that given a BDD
M , we represent

M =

(
M |xi=0,x′i=0 M |xi=0,x′i=1

M |xi=1,x′i=0 M |xi=1,x′i=1

)
such that at the end of the sub-matrix process, we have the corresponding value obtained by f→.

Repeated submatricies of the above form are represented by a shared BDD node (as they are
isomorphic). Simple matricies like I2n are represented by small BDDs (size 3n+1), and the constant
matrix is represented by 1 element.

Notation 5.1.7. We write ∃x.B to mean ∃x.fB which is defined to be fB[0/x]∨fB[1/x], where we
equivalently write B|x=0 and B|x=1. Conjunction and disjunction are equivalent to taking minimum
and maxmium.

Example 5.1.8. Consider

Sat(∃⃝ ϕ) = {s ∈ S | Post(s) ∩ Sat(ϕ) ̸= ∅}
= Pre(Sat(ϕ))

Now, Pre(T) = {s ∈ S | ∃s′, s→ s′ ∧ s′ ∈ T}. Thus,

1Pre(T)(s) = ∃s′(1→(s, s′) ∧ 1T (s
′))

The induced map is
fPre(T) = ∃x′(f→ ∧ fT [x′/x])

Giving
fSat(∃⃝ϕ) = ∃x′(f→ ∧ fSat(ϕ)[x′/x])

17

Example 5.1.9. Sat(∃(ϕ1 ∪ ϕ2)) is the least fixpoint of the function

F (T) = Sat(ϕ2) ∪ {s ∈ Sat(ϕ1) | Post(s) ∩ T ̸= ∅}
= Sat(ϕ2) ∪ (Sat(ϕ1) ∩ Pre(T))

The induced map is
fF (T) = fSat(ϕ2) ∨ fSat(ϕ1) ∧ ∃x′(f→ ∧ fT [x′/x])

This induces a function between BDDs via

F (B) = BSat(ϕ2) ∨ (BSat(ϕ1) ∧ Pre(B))

which we can compute the least fixed point of.

Example 5.1.10. Suppose we have programs
process Flip1 = while true do (if x1 = x2 then x1 := 1 - x1) od
process Flip2 = while true do x2 := 1 - x2 od

And M = [[Flip1 ||| Flip2]] = [[Flip1] ||| [Flip2]]. As an LTS, this is

(0, 0) (0, 1)

(1, 0) (1, 1)

Then, writing BFlip1 = (x1 ↔ x2) ∧ (x′1 ↔ ¬x1) and BFlip2 = x′2 ↔ ¬x2, we have that

BM = (BFlip1 ∧BId2) ∨ (BFlip2 ∧BId1)

Remark 5.1.11.

Program Matrix MM

LTS M BDD BM

CTL Sat(ϕ)

We can transform programs and properties about programs into a BDD (which practically, we
hope are compact). The nice property is that then we can manipulate programs and sets at a time
over BDDs, and membership testing is simply a run through the BDD.

5.1.2 Bounded Model Checking

The basic idea is to unroll a model up to a fixed depth k, searching for counterexamples until this
depth, reducing model checking to SAT. This method is sound but incomplete on its own (as the
search size is limited).

18

Example 5.1.12. Consider the CTL formula ∀□a. A finite path s0, . . . , sk such that sk satisfies
¬a is a counterexample.

Consider the 2-bit counter:

(00) (11)

(01) (10)

We can encode states via two boolean variables x = x0, x1 corresponding to the values of the first
and second character on the state. Given two copies of variables x, x′, we have the translation
relation

T (x0, x1, x
′
0, x

′
1) = (¬x0 ∧ ¬x1 ∧ ¬x′0¬x′1) ∨ · · ·

where the first term corresponds to the transition from 00 to 01. Equivalently,

T (x0, x1, x
′
0, x

′
1) = (x′0 ↔ ¬(x0 ↔ x1)) ∧ (x′1 ↔ ¬x1)

Let a be the statement that ‘the counter is less than 3’. Suppose now that we fix k = 1. The
initial state is init(x0, x1) = ¬x0∧¬x1. The invariant is inv(x0, x1) = ¬(x0∧x1) and inv′(x′0, x

′
1) =

¬(x′0, x′1). Then,
ϕ1(x0, x1, x

′
0, x

′
1) = (init ∧ ¬inv) ∨ (init ∧ T ∧ ¬inv′)

is satisfiable if there exists a counterexample of length less at most 1. Extending this in the natural
way gives a way to write ϕk which is satisfied if and only if there is a counterexample of length at
most k.

Example 5.1.13. A counterexample for ∀♢a is a finite path s0, . . . , sm, . . . , sn for some m ≥ 0 and
n > m such that si all satisfy ¬a and sm = sn.

Using notation from the previous example, assigning corresponding invariants,

ϕ1 = init ∧ T0 ∧ (x1 = x0) ∧ ¬inv0

where x0, x1 represent states, and equality is a conjunction of ↔ on each binary variable. Generally,

ϕk = init ∧ (T0 ∧ · · · ∧ Tk−1) ∧
∨

0≤h<k
(xk = xh) ∧ (¬inv0 ∧ · · · ∧ ¬invk−1)

which represents a path of length k that fails to satisfy the invariant.

Definition 5.1.14. A completeness threshold is an integer k for a CTL ϕ and LTS M such
that if there is no counterexample of length at most k, then M |= ϕ, which we write as M |=k ϕ.

Given a state s of M , we write s |=k ϕ if there does not eixst a counterexample for ϕ of length
at most k starting at s.

In particular, k is a completeness threshold for M,ϕ, if M |=k ϕ implies M |= ϕ. For instance,
the completeness threshold for ⃝a is 1.

Remark 5.1.15. |=k cannot be defined inductively as for normal CTL semantics (Proof??). s |=k ϕ
is in general not equivalent to s |=k ¬ϕ. For instance, s |=0 ∃ ⃝ a and s |=0 ¬∃⃝ a, as a path of
length 0 is not able to faisify claims that are completely about the future.

19

Proposition 5.1.16. Given a CTL formula ∀□a, d(M) is a completeness threshold. Similarly,
for a formula ∀♢a, rd(M) is a completeness threshold.

Proof. If there is a counterexample for ∀□a, it must be due to ¬a on a reachable state from I. This
state is reachable with a path length at most d(M).

If there is a counterexample for ∀♢a, we should find a finite path s0, . . . , sn that is always ¬a
and sn → si for 0 ≤ i ≤ n. Given such counterexample, we can always shorten it to one which has
no duplicating states (is loop free). This is a counterexample of length at most rd(M).

The path of length rd(M) can visit

Generally we have,

• CT(M, true) = CT(M, false) = CT(M,a) = CT(M,¬a) = 0

• CT(M,ϕ1 ∧ ϕ2) = CT(M,ϕ1 ∨ ϕ2) = max(CT(M,ϕ1),CT(M,ϕ2))

• CT(M, ∃⃝ ϕ) = CT(M, ∀⃝ ϕ) = 1 + CT(M,ϕ)

• CT(M, ∃(ϕ1 ∪ ϕ2)) = CT(M, ∀(ϕ1 ∪ ϕ2)) = rd(M) + CT(M,ϕ2)

where CT(M,ϕ) is the (canonical) completeness threshold for M and ϕ. So one can always convert
a CTL to PNF and find the completeness threshold by computing the recurrence diameter.

The final one uses the fact that if there exists a path in which it is not the case that ϕ1 ∪ ϕ2,
then we have (TODO!!!!!)

5.2 LTL
Definition 5.2.1. A counterexample for a LTL formula ψ on a LTS M is a sufficiently long
prefix of a path π of M with π ̸|= ψ which is sufficiently long to show π ̸|= ψ.

Example 5.2.2. Some examples of counterexamples on LTL:

• A counterexample for □a is a finite path ending in ¬a

• A counterexample for ⃝a is a 2-state path ending in ¬a

• A counterexample for ♢a is a finite prefix of ¬a states followed by a single cylce of ¬a states

• A counterexample of A ∧B is a counterexample for A or B

• A counterexample for □a → □b is a finite prefix of a states followed by a single cycle of a
states (to show □a) with one state where b is false (to show ¬□b).

Remark 5.2.3. If a linear-time property can be written as a regular language over 2AP, then there
is a NFA representation over 2AP.

Definition 5.2.4. A regular safety property is a Psafe ⊆ (2AP)ω is a regular safety property if
the language

{w ∈ (2AP)∗ | ∀σ ∈ (2AP)ω, wσ /∈ Psafe}

is regular.

20

Example 5.2.5. Consider the NFA A,

q0 q1

where q1 is the accepting state, q0 has label ∅, q1 has label {fail}. Then the language by the NFA
is L(A) = {{fail}, ∅{fail}, ∅∅{fail}, · · · }, which can translate to ‘finite traces where a failure occurs’.
This is the regular language that corresponds to the (minimal) bad prefixes of □¬fail.

Example 5.2.6. The regular safety property ‘at most 2 failures occur’ has a regular expression for
bad prefixes,

(¬fail)∗.fail.(¬fail)∗.fail.(¬fail)∗.fail

Remark 5.2.7. Given an LTS M and a regular safety property Psafe,

M |= Psafe ⇐⇒ Traces(M) ⊆ Psafe

⇐⇒ Tracesfin(M) ∩ BadPref(Psafe) = ∅

Given an NFA A representing the bad prefixes, we have

M |= Psafe ⇐⇒ Tracesfin(M) ∩ L(A) = ∅

Definition 5.2.8. Given an LTS M = (S,Act,→, I,AP, L) and an NFA A = (Q,Σ, δ,Q0, F),
we can construct the product LTS of M and A, denoted M ⊗ A as the LTS (S × Q,Act,→′

, I ′, {accept}, L′), where

• I ′ = {(s0, q) | s0 ∈ I and q0 − L(s0) � q for some q0 ∈ Q0}

• L′((s, q)) = {accept} if q ∈ F and empty otherwise

•
s− α �′ s′ ∧ q − L(s′) �′ q′

(s, q)− α �′ (s′, q′)

The intuition is that states correspond to (states inM → states in A), where a transition s→ s′

on the LTS induces a transition on the NFA along the label L(s′) (hence the requirement in the
initial states). The acceptance condition is that the induced path by the LTS reaches an accepting
state on A.

Consequently, we have

M |= Psafe ⇐⇒ Tracesfin(M) ∩ L(A) = ∅
⇐⇒ M ⊗A |= □¬accept

So model checking becomes a problem of reachability on graphs. Thus M ̸|= Psafe if and only if
some path satisfies ♢accept in M ⊗A.

Definition 5.2.9. P ⊆ (2AP)ω is an ω-regular property if P is an ω-regular language over 2AP.

Lemma 5.2.10. Any regular safety property is an ω-regular property.

Lemma 5.2.11. Any LTL formula corresponds to an ω-regular property.

Definition 5.2.12. Given an LTS M and NBA A, the product denoted M ⊗A is the same object
as the construction with NFAs.

21

Remark 5.2.13. We have the relation,

M |= ψ ⇐⇒ Traces(M) ⊆ Words(ψ)

⇐⇒ Traces(M) ∩Words(¬ψ) = ∅
⇐⇒ Traces(M) ∩ Lω(A¬ψ) = ∅
⇐⇒ there is no accepting path (cycle) in M ⊗A¬ψ

⇐⇒ M ⊗A |= ♢□¬accept

That is, to model check an LTL formula ψ on an LTS M , it is sufficient to check in the LTS-NBA-
product. Also, we can see that M ̸|= ψ if and only if there is some path that satisfies □♢accept in
M ⊗A¬ψ.

Also note that this has structural similarity to checking regular safety properties on an LTS
with a NFA. Regular safety properties are definitionally a subclass of ω-regular properties, and
many can be represented as an LTL. In that case, the same model checking works there.

There are a few methods to check this, like search for non-trivial SCCs containing the accepting
state, finding all accept states and DFS to find back edges, etc.

For a general LTL formula, we can convert to a GNBA, then to a corresponding NBA.

Lemma 5.2.14. For any LTL ψ, there is a corresponding GNBA A.

Proof. Sketch. The states are sets of ψ’s subformulae and their negations.

Remark 5.2.15. The time complexity for LTL model checking is O(|M | · 2|ψ|). Note that there
are LTL formulas ψ whose NBA A¬ψ is of size O(2|ψ|), and checking for cycles can be done in linear
time.

5.3 Software Model Checking
Definition 5.3.1. A single static assignment (SSA) form is an intermediate representation of
programs such that every assignment of a variable uses a new xi, with the access of a variable using
the latest version. For convinience, we assume an initial value x0 for each variable.

Example 5.3.2. The program
x := 2 * y;
x := x * z;
x++;

converts to
x1 := 2 * y0;
x2 := x1 * z0;
x3 := x2 + 1;

If we have conditionals, we write separate SSA code for each branch (with fresh names), and
resolve the branch afterwards. Assertions are predicated by guards.

Example 5.3.3. A code like

22

x := y;
if (x > z) {

x := x + 1;
assert x > y;
y = y + 1;

} else {
x := x + y;
assert x ̸= y;

}

converts to
x1 := y0;
x2 := x1 + 1;
assert(x1 > z0) ⇒ (x2 > y0);
y1 := y0 + 1;
x3 := x1 + y0;
assert !(x1 > z0) ⇒ (x3 ̸= y0);
x4 := (x1 > z0) ? x2 : x3;
y2 := (x1 > z0) ? y1 : y0;

From here, we convert to a CNF ϕ such that it can be satisfied if and only if a program execution
can violate an assertion. Specifically, one conjunctively equates every line (T) and conjuct that
with the negation of the assertion (invariant). Thus, ϕ = T ∧ ¬inv. Note that these equations are
not over boolean variables but predicates (of equality).

To check for satisfiability of formulae over predicates, we can use bit blasting (which converts
integers to binary, variables from predicates to boolean variables) and solve using the standard
SAT solver. Alternatively, we can use a satisfiability modulo theory (SMT) solver.

To convert from a program with loops, first simplify the program such that for loops are
converted to while loops, and structure becomes simpler (like changing breaks to gotos). Then, we
unwind loops to a fixed depth k. For instance, we can convert

while (condition) {
body

}
statements

into
if (condition) {

body
if (condition) {

body
assume (!condition);

}
}
statements

where the above is a case of 2 unwindings and replacing the while loop by a condition that blocks an
execution if conditions. Consequently, this is sound but not complete. To check for completeness,
we assert in the body that (!condition), as UNSAT implies there are no bugs. If the assertion is

23

violated, we may increase k.
The key is to mimic program execution symbolically, using symbols for unknown variables.

Definition 5.3.4. A execution tree or a computation tree is a binary tree where internal nodes
are branches (like if conditions) and leaf nodes are program exits, extracted from the control flow
graph.

The execution tree is typically infinite in size, but one can partially explore the execution tree.
Each control flow path (ending in the assertion) is executed symbolically, constructing the path
condition, appending the negation of the assertion to be checked. If the path condition is satisfiable,
then there is a assertion violation.

For instance, the code
void f(int x) {

int y = 0;
if (x >= 1000) {

y++;
x--;

}
if (x < 1000) {

y--;
}
assert(y != 0);

}

has 4 control paths, corresponding to branches in each if condition. Of course we can satisfy the
negation of the assertion when both conditions are true.

Program with loops have infinitely many paths, so there needs to be good heuristics to explore
paths.

6 Equivalence
6.1 Bisimulation
Definition 6.1.1. Let Mi = (Si,→i, Ii,AP, Li) be two LTS over the same atomic propositions for
i = 1, 2. Then, a bisimulation (between LTSs) is a binary relation R ⊆ S1 × S2 such that

• ∀s1 ∈ I1, ∃s2 ∈ I2 such that (s1, s2) ∈ R and vice versa.

• For all (s1, s2) ∈ R, L1(s1) = L2(s2) and if s′1 ∈ Post(s1), then there exists a s′2 ∈ Post(s2)
such that (s′1, s′2) ∈ R and vice versa.

If such a relation exists, we write M1 ∼M2 and that M1 and M2 are bisimular.

Definition 6.1.2. Let M = (S,→, I,AP, L) be an LTS. A bisimulation (between states) over M
is a binary relation R ⊆ S × S such that for all (s1, s2) ∈ R,

• L1(s1) = L2(s2)

• if s′1 ∈ Post(s1), then there exists s′2 ∈ Post(s2) such that (s′1, s′2) ∈ R and vice versa.

If such an R exists and (s1, s2) ∈ R, we write s1 ∼M s2, and we say that s1 and s2 are bisimular.

24

Definition 6.1.3. Given two bisimulation relations R1 and R2, we say that R1 is coarser than
R2 (and that R2 is finer than R1) if s R2 t =⇒ s R1 t for all s, t. Alternatively, we have that
R2 ⊆ R1.

Proposition 6.1.4. The union of two bisimulations R1 and R2 is a coarser bisimulation relation.

Proof. OoSN.

Definition 6.1.5. Given a bisimulation R, the induced quotient space S/R = {[s]R | s ∈ S}, where
[s]R = {s′ ∈ S | (s, s′) ∈ R}. Given M and R, the bisimulation quotient (system) is

M/R = (S/R,→′, I ′,AP, L′)

such that

• I ′ = {[s]R | s ∈ I}

• L′([s]R) = L(s)

•
s→ s′

[s]R →′ [s′]R

Lemma 6.1.6. For any M and bisimulation R, M/R is bisimular to M .

Proof. OoSN.

Lemma 6.1.7. Let ∼M be the union of all bisimulations over M . Then M/ ∼M is the obtained
as the coarsest among all possible bisimulations R over M .

Proof. OoSN.

We sometimes call this the bisimulation quotient for M .

Lemma 6.1.8. If M1 ∼M2, then Traces(M1) = Traces(M2).

Proof. The idea is that for any path inM1 has a corresponding path inM2 that behaves identically
over any finite observation (by induction). We can sort-of extend this by a chain-completeness
argument.

Corollary 6.1.9. Any bisimular LTSs satisfy the same linera-time properties.

Theorem 6.1.10 (Equivalence Results). • ≡trace⊊≡LTL (strictness requires infinite state
space)

• ∼M=≡CTL∗; bisimulation equivalence and CTL* equivalence coincides.

• ≡CTL=≡CTL∗.

Proof. OoSN.

Remark 6.1.11. As a consequence of the second result, bisimulation preserves satisfaction of
CTL*, CTL, and LTL formulae. In particular, it suffices to model check on the quotient model,
for both M |= ϕ and M ̸|= ϕ. Also, given any s ∼M s′, s |= ϕ and s ̸|= ϕ by any CTL formula
disproves bisimilarity.

25

Example 6.1.12. Consider two LTSs,

s0

s1

s2 s3

s0

s1 s1

s2 s3

which we have given labels directly on the state. Then the CTL formula

ϕ = ∃⃝ (∃⃝ s2 ∧ ∃⃝ s3)

is satisfied by the left but not by the right.

Remark 6.1.13. Checking whether R is a bisimulation relation is straightforward. Equivalence
checking (seeing whether M1 and M2 are bisimular) can be reduced to a problem of finding the
bisimulation quotient of the disjoint union of LTSs M1 and M2, and ensuring that for any s1 ∈ I1
we can find an s2 ∈ I2 such that s1 ∼ s2 and vice versa.

One algorithm to compute the bisimulation quotient of an LTS is as follows:

• start with the partition based on labelling

• repeatedly split state blocks that are not bisimilar

at termination, this gives the coarsest partition.

Example 6.1.14. Suppose there is some simple process who is composed in parallel 100 times.
The state space becomes exponential. However, without collapsing from this LTS, we can instead
count the number of processes in each local state via counting, choosing a representative via sorting
(by giving a order on local states). This gives a bisimular LTS that is significantly smaller, and is
easier to find the bisimulation quotient.

6.2 Simulation
Definition 6.2.1. Let Mi = (Si,→i, Ii,AP, Li) be two LTS over the same atomic propositions for
i = 1, 2. Then, a simulation (between LTSs) is a binary relation R ⊆ S1 × S2 such that

• ∀s1 ∈ I1, ∃s2 ∈ I2 such that (s1, s2) ∈ R.

• For all (s1, s2) ∈ R, L1(s1) = L2(s2) and if s′1 ∈ Post(s1), then there exists a s′2 ∈ Post(s2)
such that (s′1, s′2) ∈ R.

If such a relation exists, we write M1 ⪯M2 and that M1 is simulated by M2.

Example 6.2.2. Taking the LTSs from Example 6.1.12, we clearly have that the right side ⪯ left
side.

Definition 6.2.3. Let M = (S,→, I,AP, L) be an LTS. A simulation (between states) over M
is a binary relation R ⊆ S × S such that for all (s1, s2) ∈ R,

26

• L1(s1) = L2(s2)

• if s′1 ∈ Post(s1), then there exists s′2 ∈ Post(s2) such that (s′1, s′2) ∈ R.

If such an R exists and (s1, s2) ∈ R, we write s1 ⪯M s2. This is naturally a preorder.

Definition 6.2.4. Let M be an LTS and A be a set of abstract states. Let f : S → A be an
abstraction function such that for all s, s′ ∈ S, f(s) = f(s′) implies L(s) = L(s′). Then, define
the abstract LTS, written Mf to be

Mf = (A,→f , If ,AP, Lf)

such that

• If = {f(s) | s ∈ I}

• Lf (f(s)) = L(s)

•
s→ s′

f(s) →f f(s
′)

Proposition 6.2.5. Let Mf be an abstract LTS of M . Then we have M ⪯Mf .

Remark 6.2.6. A could be a partition of S, but is not required. Note that there is a trivial f that
partitions based on the label.

Definition 6.2.7. Given abstraction functions f and f r, f r refines f if

• for all s, t ∈ S, f r(s) = f r(t) implies that f(s) = f(t)

• there exists s, t ∈ S such that f r(s) ̸= f r(t) and f(s) = f(t)

Definition 6.2.8. If LTS M1,M2 satisfy M1 ⪯ M2 and M2 ⪯ M1, we say that they are a
simulation equivalence and that M1 ≃M2.

Example 6.2.9. Simulation equivalence need not imply bisimularity. Consider the LTSs,

s0

s1

s2

s0

s1 s1

s2

where we show labels instead of states. This is clearly simulation equivalent but not bisimular.

Lemma 6.2.10. Simulation implies trace inclusion. That is,

M1 ⪯M2 =⇒ Traces(M1) ⊆ Traces(M2)

In particular, if M1 ⪯M2, for any LT property P , M2 |= P implies M1 |= P .

27

Definition 6.2.11. Let ∀CTL∗ be the positive normal fragments of CTL* without ∃.

Lemma 6.2.12. Every safety property in CTL* is in ∀CTL*.

Lemma 6.2.13. For any ∀CTL∗ formula ϕ,

• M1 ⪯M2 if and only if M2 |= ϕ =⇒ M1 |= ϕ

• M1 ≃M2 if and only if M2 |= ϕ ⇐⇒ M1 |= ϕ

Corollary 6.2.14. Given LTSM1,M2 such thatM1 ⪯M2 and a ∀CTL∗ formula such thatM1 |= ϕ
and M2 ̸|= ϕ, then M1 ̸≃M2.

Remark 6.2.15. Considering ∀CTL∗ (positive normal fragments of CTL* without ∃), we have

The CEGAR (counterexample-guided abstraction refinement) algorithm does the following,
given an LTS M and property ϕ (in LTL or ∀[CTL]∗):

• Start with an abstraction M ′

• Check M ′ |= ϕ. If yes, return M |= ϕ

• Generate counterexample c and try to map to M . If c holds in M (symbolically mappable),
return M ̸|= ϕ

• Else, counterexample is ‘spurious,’ (or infeasible) so refine M ′ based on the counterexample
and repeat.

The idea is that we start with an overapproximation and move towards smaller overapproxima-
tions by finding counterexamples in the overapproximation. We can implement this in a SAT-based
manner, which uses sat to model check M ′ |= ϕ and k-step SAT the counterexamples.

Example 6.2.16. Consider the LTS

M1 = s1 s2

s1 s2

M2 = s1 s2

and the initial abstraction M2 such that M1 ⪯M2. Suppose we want to test M1 |= ∀♢s2. We have
a counterexample in M2 (consider tω1), but this is spurious, so refine M2

M3 = s1 s1 s2

such that M1 ⪯M3. Now M3 |= ∀♢s2 so M1 |= ∀♢s2.

28

Example 6.2.17. Consider

M1 = s1 s2

s1 s2

M2 = s1 s2

Then we have M2 ̸|= ∀□¬s2 with counterexamples like s1s2 (slight abuse of notation, assuming we
know the original labels) or s1s1s2. The first is spurious but the latter is not.

29

	Automata
	Regular Language
	NFA
	Omega-regular expression
	Nondetermininstic Büchi automation

	Graph
	Binary Decision Diagram

	Logic
	Propositional Logic
	Normal Forms and Satisfiability

	Linear Temporal Logic
	Computation Tree Logic
	Positive Normal Form

	Labelled Transition Systems
	Basic Definitions
	Parallel Composition

	Linear Time Properties
	Classes of Linear Time Properties

	Semantics
	Over Propositional Logic
	Over LTL
	Over CTL

	CTL vs LTL
	CTL*

	Model Checking
	CTL
	Symbolic Model Checking via BDDs
	Bounded Model Checking

	LTL
	Software Model Checking

	Equivalence
	Bisimulation
	Simulation

