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1 Introduction

1.1 Basic Definitions

In this note we assume rings are associative, commutative, and unitary. Ring homomorphisms are
also unitary (sending 0R to 0S).

Definition 1.1.1. Let R be a ring. Let I ⊆ R is an ideal in R. I is proper if I ̸= R and I is
principal if it can be generated by a single element.

Definition 1.1.2. An element r ∈ R is nilpotent if there exists an integer n ≥ 1 such that rn = 0.

Definition 1.1.3. A ring R is local if it has a single maximal ideal m. In this case, every element
in R\m is a unit.

Definition 1.1.4. The prime ring of a ring R is the image of the unique (unitary) homomorphism
Z→ R.

Definition 1.1.5. The zero divisor of a ring R is an element r ∈ R such that there exists a
r′ ∈ R\{0} with r · r′ = 0. If R is not the zero-ring, 0 is always a zero divisor of R.

Definition 1.1.6. A domain is a ring R with the property that the set of zero divisors consists
only of 0. (In the case it is commutative, we call it an integral domain).

Definition 1.1.7. A Unique Factorization Domain (UFD) or a factorial ring is a domain R
which has a unique factorization of non-zero elements with irreducible elements up to permutation
and multiplication by units.

Definition 1.1.8. Given rings R and T , T is said to be an R-algebra if there is a homomorphism
of rings R→ T .

Note that an R-algebra T carries the structure of an R-module using the map provided by the
homomorphism.

Definition 1.1.9. Given ϕ1 : R → T1 and ϕ2 : R → T2 to be two R-algebras, a homomorphism of
R-algebras is a homomorphism of rings λ : T1 → T2 such that λ ◦ ϕ1 = ϕ2.

Definition 1.1.10. An R-algebra ϕ : R → T is said to be finitely generated if there exists
an integer k ≥ 0 and a surjective homomorphism of R-algebras R[x1, . . . , xk] → T (evaluation of
variables) where the polynomial is R if k = 0.

Proposition 1.1.11. Given that R → T is a finitely generated R-algebra and T → W is also a
finitely generated T -algebra, the composed map from R→W is a finitely generated R-algebra.

Proof. TODO!!

Definition 1.1.12. Let M be a R-module and S ⊆M . Then,

AnnM (S) = {r ∈ R | rm = 0∀m ∈ S}

The set AnnM (S) is an ideal of R and is called the annihilator of S.

Definition 1.1.13. A poset (partially ordered set) is a set equipped with an operator ≤ which
is reflexive, transitive and antisymmetric. It is called a total order if it is also connex. We call the
operator a partial order.
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Definition 1.1.14. Let T ⊆ S. An element s ∈ S is an upper bound of T if for any t ∈ T ,
t ≤ s. An element s ∈ S is a maximal element of S if for any t ∈ S, s ≤ t if and only if s = t.
Similarly, s ∈ S is a minimal element if t ≤ s if and only if t = s.

Remark 1.1.15. Given a poset S and T ⊆ S, the relation ≤ on S restricted to elements of T gives
a poset on T .

Proposition 1.1.16 (Zorn’s Lemma (Equivalently, AC)). Let S be a poset. If every T ⊆ S that is
totally ordered (with restriction of ≤ on T ) has an upper bound in S, then there exists a maximal
element in S.

Proof. TODO!! (set theory stuff, ask cs phil)

Proposition 1.1.17. Let R be a ring and I ⊆ R be a proper ideal. Then, at least one of the
maximal ideals of R contains I.

Proof. Let S be the set of all proper ideals containing I. Give a partial order on S by inclusion. For
any T ⊆ S with T totally ordered, then T has an upper bound

⋃
J∈T J is a proper ideal containing

I. It is proper as otherwise we have 1 ∈ J for some J ∈ T . Thus, by Zorn’s Lemma, there exists a
maximal element m in S.

By definition, whenever m ⊆ J and J is a proper ideal containing I, we have m = J . If J does
not contain I, as m contains I, m ̸⊆ J . Hence, m is maximal and contains I.
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2 Localisation

2.1 Localisation of Rings

Definition 2.1.1. A subset S of R is said to be multiplicative or a multiplicative set if 1 ∈ S
and xy ∈ S whenever x ∈ S and y ∈ S.

Equivalently, it is a submonoid of the multiplicative monoid (R,×). For instance, the set
{1, f, f2, . . . } for a fixed f ∈ R is a multiplicative set.

Definition 2.1.2. Let S ⊆ R. Consider the set R × S and define a relation ∼ on it, where
(a, s) ∼ (b, t) if and only if there exists a u ∈ S such that u(ta− sb) = 0. One can check this is an
equivalence relation.

Define the localisation of R at S, denoted RS or RS−1 to be (R × S)/ ∼. Given a ∈ R and
s ∈ S, write a/s for the image of (a, s) in RS−1.

Define
+ : RS−1 ×RS−1 → RS−1, (a/s, b/t) 7→ (at+ bs)/(st)

and
· : RS−1 ×RS−1 → RS−1, (a/s, b/t) 7→ (ab)/(st)

These are both well defined with any choice of representative.

The set RS−1 with the operations above give a structure of a ring with identity element 1/1,
0-element 0/1 and a natural map from R to RS−1 via r 7→ r/1. By construction, for any r ∈ S,
r/1 is invertible with 1/r.

Note the fact that if R is a domain, the fraction field of R is the ring R(R\0)−1.

Proposition 2.1.3. If R is a domain, for any S ⊆ R, RS−1 is also a domain.

Proof. Suppose 0 /∈ S and (a/s)(b/t) = 0 where a, b ∈ R and s, t ∈ S. Then, we have u(ab) = 0 for
some u ∈ S. As R is a domain, ab = 0, giving a = 0 or b = 0. Specifically, a/s = 0/1 or b/t = 0/1.

If 0 ∈ S, the equivalence relation equates all elements, making the localisation a zero-ring. This
is a domain.

Definition 2.1.4. Let M be a R-module. Let S ⊆ R be multiplicative. Define a relation ∼ on
M × S by (a, s) ∼ (b, t) if and only if there exists a u ∈ S such that u(ta − sb) = 0. We define
localised module MS−1 or MS to be (M × S)/ ∼ with

+ :MS−1 ×MS−1 →MS−1, (a/s, b/t) 7→ (ta+ sb)/(st)

and
· : RS−1 ×MS−1 →MS−1, (a/s, b/t) 7→ (ab)/(st)

which give MS−1 the structure of a RS−1 module. The 0 element is 0/1 and carries the structure
of a natural map R→ RS−1 and a natural map of R-modules M →MS−1 given by m 7→ m/1

Lemma 2.1.5. Let ϕ : R → R′ be a ring homomorphism and S ⊆ R be a multiplicative set.
Suppose ϕ(S) consists of units in R′. Then, there is a unique ring homomorphism ϕS such that
ϕS(r/1) = ϕ(r) for all r ∈ R

R R′

RS−1

ϕ

ϕS
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Proof. Define the map ϕS : RS → R′ by ϕS(a/s) = ϕ(a)(ϕ(s))−1 for all a ∈ R and s ∈ S. We first
show it is well defined. Suppose (a, s) ∼ (b, t). Then,

ϕS(b/t) = ϕ(b)(ϕ(t))−1

and noting that u(ta− sb) = 0 for some u ∈ S,

ϕ(u)(ϕ(t)ϕ(a)− ϕ(s)ϕ(b)) = 0

As ϕ(u) is a unit, multiplying it away we have ϕ(t)ϕ(a) − ϕ(s)ϕ(b) = 0, or ϕ(t)ϕ(a) = ϕ(s)ϕ(b).
Consequently, ϕS(a/s) = ϕ(a)(ϕ(s)−1) = ϕ(b)(ϕ(t)−1) = ϕS(b/t). Noting that ϕS is also a homo-
morphism, we also confirm ϕS(r/1) = ϕ(r) for all r ∈ R.

For uniqueness, if ϕ′S : RS → R′ is another such map, for every r ∈ R and t ∈ S,

ϕ′S(r/t) = ϕ′S((r/1)(t/1)
−1)

= ϕ′S(r/1)ϕ
′
S(t/1)

−1

= ϕS(r)ϕS(t)
−1

= ϕS(r/t)

Lemma 2.1.6. Let R be a ring and S ⊆ R be a multiplicative set. Let M be an R-module, and for
all s ∈ S suppose the map

[s]M :M →M,m 7→ sm

is an isomorphism. Then there is a unique structure of an RS module on M such that (r/1)m = rm
for all m ∈M and r ∈ R.

Proof. Follows a similar structure to above. The left-multiplication operator being an isomorphism
lets us define suitable inverses for elements of S. Specifically, we define (r/s)m to be [s]−1

M (r/m)
and extend from here.

Lemma 2.1.7. Let R be a ring and f ∈ R. Define S = {1, f, f2, . . . }. Then RS is finitely generated
as an R-algebra.

Proof. Consider the R-algebra T = R[x]/(fx − 1). Note that T is generated as an R-algebra
by 1 + (fx − 1) and x + (fx − 1). Define ϕ : R[x] → RS by the homomorphism of R-algebras
extneded from ϕ(x) = 1/f . Then ϕ(fx− 1) = 0 and thus ϕ induces a homomorphism of R-algebras
ψ : T → RS by g + (fx− 1) 7→ ϕ(g).

As the image of f in T is invertible by construction, by 2.1.5 there is a unique homomorphism
of R-algebras λ : RS → T that extends from

R→ T, 1 7→ 1 + (fx− 1)

The map ψ ◦ λ : RS → RS with elements of the form r/1 is the identity, thus the entire map is the
identity by uniqueness. Specifically, λ is injective. λ is also surjective, as it maps to the generators
of T . Consequently, T and RS are isomorphisms.

R[x] RS

T = R[x]/(fx− 1)

ϕ

q(fx−1)

λ

ψ
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Proposition 2.1.8. If R is a ring and ϕ : N → M is a homomorphism of R-modules, there is a
unique homomorphism of RS modules ϕS : NS → MS such that ϕS(n/1) = ϕ(n)/1 for all n ∈ N .
If ψ :M → T is another homomorphism of R-modules, then (ψ ◦ ϕ)S = ψS ◦ ϕS.

Proof. The second part is straightforward. For the first, note that the map is given by ϕS(n/m) =
ϕ(n)/m, and uniqueness follows.

Proposition 2.1.9. Let R be a ring and S ⊆ R be a multiplicative set. Let I be an ideal in R.
Then,

RS/IS ≃ (R/I)S

Given an R-module M and a submodule N ⊆M ,

MS/NS ≃ (M/N)S

Proof. Consider the map ϕ : RS → (R/I)S by (r/s) 7→ (q(r)/s) where q is the quotient map. This
is a well defined and surjective map with kernel IS . The proof follows by the first isomorphism
theorem. The case for modules is similar.

Definition 2.1.10. Let
· · · →Mi

di→Mi−1
di−1→ · · ·

be a sequence of R-modules with homomorphisms mapping between them such that di−1 ◦ di = 0 for
all i ∈ Z. We call such a sequence a chain complex of R-modules. We say that the complex is
exact if Ker(di−1) = Im(di) for all i ∈ Z.

Lemma 2.1.11. Let R be a ring and S ⊆ R be a multiplicative set. Let

· · · →Mi
di→Mi−1

di−1→ · · ·

be an chain complex of R-modules. If this is exact, the chain

· · · → (Mi)S
(di)S→ (Mi−1)S

(di−1)S→ · · ·

is also exact. If the second chain is exact for every maximal ideal m of R, the first chain is exact.

Proof. We show the first statement first. Let m/s ∈ (Mi)S . Suppose that (di)S(m/s) = 0. Then,
(di)S(m/1) = di(m)/1 = 0. Thus u · di(m) = 0. Then um ∈ Im(di+1) as the first sequence is exact.
Thus, there exists a p ∈Mi+1 such that di+1(p) = um, thus (di+1)S(p/us) = m/s.

For the latter, we show the contrapositive. Suppose the first chain complex is not exact. Then,
there exists a i ∈ Z such that

Ker(di)/Im(di+1) ̸= 0

Take a non-zero element a from this set. Let m be a maximal ideal containing Ann(a), which exists
as 1 /∈ Ann(a) (a is non-zero). Then, Ker(di)/Im(di+1) ̸= 0 as else there is a u ∈ R\m ⊆ R\Ann(a)
with u · a = 0 which is a contradiction. By the first isomorphism theorem, there is a natural
isomorphism

Ker(di)m/Im(di+1)m ≃ (Ker(di)/Im(di+1))m ̸≃ 0

8



Lemma 2.1.12. Let ϕ : R → T be a ring homomorphism. Let S ⊆ R be a multiplicative set. By
Lemma 2.1.5 there is a unique homomorphism of rings ϕ′ : RS → Tϕ(S) with ϕ′(r/1) = ϕ(r)/1.
Viewning Tϕ(S) as an RS module and T as an R-module, there is a unique isomorphism of RS
modules µ : TS ≃ Tϕ(S) such that µ(a/1) = a/1 for all a ∈ T and µ ◦ ϕS = ϕ′.

R RS

T Tϕ(S) TS

ϕ ϕ′
ϕS

µ

Proof. Define µ(a/s) = a/ϕ(s) for every a ∈ T and s ∈ S. Given a/s = b/t, there is a u ∈ S such
that

u · (t · a− s · b) = 0

The action by R onto T is defined by ϕ, so equivalently,

ϕ(u)(ϕ(t)a− ϕ(s)b) = 0

meaning a/ϕ(s) = b/ϕ(t) as ϕ(u) is a unit, and thus µ is well-defined. By construction, µ is a map
of RS modules and is also surjective. To see µ is injective, if µ(a/s) = 0/1 for some a ∈ T and
s ∈ S, there is a u ∈ S such that ϕ(u)a = 0. Thus, u · a = 0 in T , giving a/1 = 0 in TS , implying
a/s = 0. Thus µ is bijective.

The identity µ ◦ ϕS = ϕ′ follows by noting that composition of homomorphisms are homomor-
phisms and µ ◦ ϕS(1/1) = ϕ′(1/1).

Remark 2.1.13. Taking the identity map from R to R, we see that localisation of a ring R as
viewed as a ring or a module over itself, we get the same RS-module.

Proposition 2.1.14. Let R be a ring and p be a prime ideal in R. Then R\p is a multiplicative
set.

Proof. 1 /∈ p as p is prime, and if x, y /∈ p then xy /∈ p as it is prime.

Notation 2.1.15. Write Rp to denote RR\p and if M is an R−module, write Mp to mean MR\p.
Note that the notation in unambiguous as prime ideals never contain 1.

Simiarly, if ϕ :M → N is a homomorphism of R-modules, write ϕp for ϕR\p :Mp → Np

Proposition 2.1.16. If ϕ : U → R is a homomorphism of rings and p is a prime ideal of R, then
ϕ naturally induced a homomorphism of rings Uϕ−1(p) → Rp

Proof. Noting that ϕ(U\ϕ−1(p)) ⊆ R\p, we can give a map (a/s) 7→ (ϕ(a)/ϕ(s)).

Notation 2.1.17. The above map is often written as ϕp.

Lemma 2.1.18. Let R be a ring and S ⊆ R be a multiplicative set. Let λ : R→ RS be the natural
ring homomorphism. Then, there is a bijective correspondence with the prime ideals of RS and p of
R such that p ∩ S = ∅.

The corresponding prime ideal of RS is ιp,S(pS) ⊆ RS where ιp : p → R is the inclusion map
(which is a homomorphism of R-modules).

Furthermore, ιp,S(pS) is the ideal generated by λ(p) in RS

9



Proof. We first prove that given any ideal I, ιI,S(IS) is the ideal generated by λ(I) in RS . Note
that by definition, ιI,S(IS) consists of all elements a/s ∈ RS for a ∈ I and s ∈ S. Thus this is
an ideal of RS which contains λ(I). As a/s = (a/1)(1/s) every element is contained in the ideal
generated by λ(I).

We show next bijective correspondence. First, we claim that if J is a proper ideal of RS , then
λ−1(J) ∩ S = ∅. Otherwise, choose s ∈ λ−1(J) such that s ∈ S. Then, λ(s) = s/1 ∈ J , which
is a unit, contradicting with J being a proper ideal. As preimages of prime ideals are prime, λ−1

maps prime ideals J of RS into prime ideals of R such that λ−1(J) ∩ S = ∅. To show injectivity
of λ−1 when restricted to prime ideals, we claim that if J is an ideal of RS , the ideal generated
by λ(λ−1(J)) in RS is J . Inclusion is obvious. If a/s ∈ J , a/1 ∈ J , meaning a ∈ λ−1(J). As
a/s = (a/1)(1/s) is in the ideal generated by λ(λ−1(J)).

For the other direction, we first show that if p is a prime ideal of R such that p∩S = ∅, ιp,S(pS)
is a prime ideal of RS . For this, consider the exact sequence of R-modules

0→ p→ R
q→ R/p→ 0

where q is the quotient map. By Lemma 2.1.11, the sequence of RS modules

0→ pS → RS
qS→ (R/p)S → 0

is also exact. By Lemma 2.1.12, (R/p)S is isomorphic as an RS module to (R/p)q(S). By the First
isomorphism theorem, (R/p)S ≃ (RS)/(pS), giving (RS)/(pS) ≃ (R/p)q(S). By assumption, R/p is
a domain, and noting 0 /∈ q(S) as S ∩ p = ∅, (R/p)q(S) is a domain. Consequently, pS is a prime
ideal. Finally, to show that ιp,S(·S) is injective when restricted to prime ideals p with p ∩ S = ∅,
we show λ−1(ιp,S(pS)) = p if p ∩ S = ∅. Noting that ιp,S(pS) is the ideal generated by λ(p) in RS ,
we have λ−1(ιp,S(pS)) ⊇ p. Taking a ∈ λ−1(ιp,S(pS)), a/1 = b/s for some b ∈ p and s ∈ S. So, for
some u ∈ S, u(sa− b) = 0, or usa = ub. As ub ∈ p and us /∈ p, it follows a ∈ p from the fact p is a
prime ideal.

Remark 2.1.19. As a consequence of Lemma 2.1.18, Spec(λ)(Spec(RS)) consists of prime ideals
in Spec(R) that do not meet S. Given that S = {1, f, f2, . . . }, we have

Spec(λ)(Spec(RS)) = Df (R)

Corollary 2.1.20. Given that p ∈ Spec(RS) then λ induces a natural homomorphism of rings
Rλ−1(p) → (RS)p. This homomorphism is an isomorphism.

Proof. Define the map ϕ with ϕ(r/s) = ((r/1)/(s/1)). It is straightforward that this map is both
injective and surjective.

Corollary 2.1.21. The nilradical of R is the intersection of every prime ideal.

Proof. Following the same proof as before, if we have a nilpotent element, it is part of every prime
ideal (by quotienting by the prime). Let R be a ring and r ∈ R is an element that is not nilpotent.
Let S = {1, r, r2, . . . }. RS is non-zero as r/1 ̸= 0/1 by nilpotence. Let q be a prime ideal of RS .
By Lemma 2.1.18, this ideal corresponds to a prime ideal p of R such that r /∈ p (doesn’t intersect
with S).

Corollary 2.1.22. Let R be a ring and p ⊆ R be a prime ideal. The ring Rp is local. If m is the
maximal ideal of Rp and λ : R→ Rp is the natural homomorphism of rings, λ−1(m) = p.
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Proof. By Lemma 2.1.18, prime ideals of Rp correspond to prime ideals of R that don’t meet R\p.
Noting that this correspondence is given by monotonic maps on inclusion, every prime ideal of Rp is
contained in the prime ideal corresponding to p. Let I be a maximal ideal of Rp. As I is contained
in the prime ideal contained in the prime ideal corresponding to p, it must concide by maximality.
Thus the prime ideal m corresponding to p is maximal and is the only maximal ideal. By the
correspondence map, λ−1(m) = p.

11



3 Prime Ideals

3.1 Nilradical

Definition 3.1.1. Let R be a ring. The nilradical of R is the set of nilpotent elements of R. We
say that R is reduced if its nilradical is {0}.

Proposition 3.1.2. Let R be a ring. The nilradical of R is the intersection of all the prime ideals
of R.

Proof. Let f ∈ R be a nilpotent element. Let I ⊆ R be a prime ideal. Some power of f is zero,
which is an element of I. Specifically, f + I ∈ R/I is a zero-divisor. As I is prime, R/I is a domain,
meaning f + I = I. Thus, f ∈ I, meaning f is in the intersection of all the prime ideals of R.

Conversely, suppose f ∈ R is not nilpotent. Let S be the set of proper ideals I of R such that
for all n ≥ 1, fn /∈ I. Note that (0) ∈ S. Giving a partial order on S by inclusion, every total
ordered subset in S has an upper bound by union. By Zorn’s Lemma, S has a maximal element m.

We claim m is a prime ideal. Then, as m ∈ S, fn /∈ m for any n ≥ 1. Specifically, as f /∈ m, f
does not lie in the intersection of the prime ideals of R.

To show that m is prime, suppose we take x, y ∈ R and x, y /∈ m. It suffices to show that xy /∈ m.
Note first that both (x) + m and (y) + m are ideals which do not lie in S by maximality. Thus,
there exists nx, ny ≥ 1 such that fnx ∈ (x) +m and fny ∈ (y) +m (Note the existence follows as if
I is not proper, I = R and f ∈ R). Thus, fnx = a1x+m1 and fny = a2y +m2 for a1, a2 ∈ R and
m1,m2 ∈ m. Specifically,

fnx+ny = a1a2xy +m3

for some m3 ∈ m, using that m is an ideal. Thus, xy /∈ m, as else fnx+ny ∈ m.

Corollary 3.1.3. Let R be a ring. The nilradical of R is an ideal.

Proof. Follows from the fact that the intersection of an arbitrarily set of ideals is an ideal.

We can prove the above corollary without relying on the previous proposition, by simply showing
that the set of nilpotent elements are closed under addition and multiplication by elements of R.

Example 3.1.4. The nilradical of C[x]/(xn) for n ≥ 1 is (x).

3.2 Radical

Definition 3.2.1. Let I ⊆ R be an ideal. Let q : R → R/I be the quotient map, and N be the
nilradical of R/I. The radical r(I) of I is q−1(N ).

The nilradical of R coincides with the radical r((0)). As notation, we sometimes write r(R) for
the nilradical of R. By Proposition 3.1.2, the radical of I has two equivalent definitions :

1. It is the set of elements f ∈ R such that there exists an integer n ≥ 1 such that fn ∈ I.

2. It is the intesection of prime ideals of R which contain I.

Example 3.2.2. Consider Z/12Z. r(R) = (6) is not a prime ideal, so radicals need not be prime.

Proposition 3.2.3. Let I be an ideal in R. Then, r(r(I)) = r(I).

Proof. Note that r(I) = {f ∈ R | fn ∈ I, n ≥ 0}. So, r(r(I)) = {f ∈ R | fmn ∈ I, n,m ≥ 0} =
r(I).

12



Proposition 3.2.4. Let I, J be ideals in R. Then, r(I ∩ J) = r(I) ∩ r(J).

Proof. Follows from the first equivalent definition.

Definition 3.2.5. An ideal that coincides with it’s own radical is called a radical ideal.

A trivial radical ideal is the (0) when working with domains.

3.3 Jacobson Radical

Definition 3.3.1. Let R be a ring. The Jacobson radical of R is the intersection of all the
maximal ideals of R.

Note that by definition, the Jacobson radical of R contains the nilradical of R. Also note that
if a ring is local, then the Jacobson radical is the maximal ideal of R.

Definition 3.3.2. Let I ⊆ R be a non-trivial ideal. Let q : R → R/I be the quotient map and J
be the Jacobson radical of R/I. The Jacobson Radical of I is q−1(J ). Equivalently, it is the
intersection of all the maximal ideals containing I (by taking a larger ideal and showing it is actually
the entire set).

Note that by definition, the Jacobson radical of I contains the radical of I.

Proposition 3.3.3 (Nakayama’s Lemma). Let R be a ring. Let M be a finitely generated R-module.
Let I be an ideal of R contained by the Jacobson radical of R. Suppose further that IM =M (where
product is the finite sum). Then M ≃ 0.

Proof. Suppose M ̸≃ 0. Let x1, . . . , xs be the set of generators of M such that s is minimal, where
s ≥ 1 as M is nonzero. By assumption, there exists a1, . . . , as ∈ I such that

xs = a1x1 + · · ·+ asxs

Rewriting,
(1− as)xs = a1x1 + · · ·+ as−1xs−1

If 1 − as is not a unit, it would be contained in some maximal ideal m by Proposition 1.1.17. As
as ∈ I which is inside the Jacobson radical which is inside any maximal ideal, we have as ∈ m,
giving 1 ∈ m, a contradiction. Thus, 1− as is a unit. Rewriting,

xs = (1− as)−1a1x1 + · · ·+ (1− as)−1as−1xs−1

contradicting the minimality of s. Thus, M ≃ 0.

Corollary 3.3.4. let R be a local ring with maximal ideal m. Let M be a finitely generated R-
module. Let x1, . . . , xs ∈ M be elements of M and x1 + mM, . . . , xs + mM ∈ M/mM generate the
R/m-module M/mM . Then the elements x1, . . . , xs generate M .

Proof. Let M ′ ⊆ M be the submodule generated by x1, . . . , xs. By assumption, M ′ + mM = M ,
thus, m(M/M ′) =M/M ′. By Nakayama’s lemma, we have M/M ′ ≃ (0), giving M =M ′.

Corollary 3.3.5. Let R be a local ring with maximal ideal m. Let M,N be finitely generated
R-modules and ϕ :M → N be a homomorphism of R-modules. Suppose the induced homomorphism

M/mM → N/mN

is surjective. Then ϕ is surjective.
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Proof. Let x1, . . . , xs be generators of M . By assumption, ϕ(x1) +m, . . . , ϕ(xs) +m generate N/m.
Thus, by Corollary 3.3.4, ϕ(x1), . . . , ϕ(xs) generate N . In particular, ϕ is surjective.

Definition 3.3.6. A ring R is called a Jacobson ring if for all the proper ideals I of R, the
Jacobson radical of I coincides with the radical of I.

Proposition 3.3.7. A ring R is a Jacobson ring if and only if every prime ideal I is the intersection
of maximal ideals containing I.

Proof. If R is Jacobson, every Jacobson radical of I coincides with the radical of I. Thus, for any
prime I, the intersection of maximal ideals containing I is equal to the intersection of prime ideals
containing I, which is just I.

Conversely, let every prime ideal be the intersection of maximal ideals containg itself. Then, for
any ideal I, the radical of I is the intersection of maximal ideals containing a prime ideal which
contains I. As any maximal ideal is prime, this is just the intersection of maximal ideals containing
I, which is the Jacobson radical of I.

Proposition 3.3.8. Any quotient of a Jacobson ring is also Jacobson.

Proof. Let R be a Jacobson ring. Let R/I be the quotient ring with some ideal I. It suffices to
show every prime ideal of R/I is the intersection of maximal ideals containing it. For any prime
ideal J containing I, as R is a Jacobson ring,

J =
⋂
J⊆m

m

for maximal ideals m. By correspondence, takig quotients,

J/I =
⋂
J⊆m

m/I

writes any prime ideal of R/I as the intersection of maximal ideals containing it.

Example 3.3.9. The following are examples of Jacobson rings.

1. The ring Z

2. Any field

3. Given a field K, the polynomial ring K[x]

4. Any finitely generated algebra over a Jacobson ring

Contrary to this, a local domain is never Jacobson unless it is a field. This follows as (0) is prime,
which equals the intersection of maximal ideals, which is just m. As this is (0), it is a field. As a
corollary, the ring of p-adic integers Zp for prime p is not Jacobson.
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3.4 Spectrum

Definition 3.4.1. Let R be a ring. The spectrum of R written Spec(R) is the set of prime ideals
of R.

Furthermore, given an ideal I of R, define

V (I) = {p ∈ Spec(R) | I ⊆ p}

which is the set of prime ideals containing I.

Proposition 3.4.2. The function V (·) has the following properties

1. V (I) ∪ V (J) = V (I · J)

2. ∩I∈IV (I) = V (
∑

I∈I I)

3. V (R) = ∅

4. V ((0)) = Spec(R)

Proof. (1) Double inclusion. One direction is clear, as IJ ⊆ I and IJ ⊆ J . If K ∈ V (IJ), IJ ⊆ K
where K is prime. Suppose for a contradiction I ̸⊆ K and J ̸⊆ K. Take elements i ∈ I\K and
j ∈ J\K. As ij ∈ K, i ∈ K or j ∈ K, which contradicts choice.

(2) Double inclusion. One direction is clear, as J ⊆
∑

I∈I I for any J ∈ I. For the other
direction, suppose we have a prime K such that I ⊆ K for every I ∈ I. Then we note

∑
I∈I I ⊆ K,

as for any element in the sum decomposed to elements from I, they are in K, whose sum is also in
K.

(3), (4) are immediate.

Definition 3.4.3. The topology induced by setting V (I) to be closed sets form a topology called the
Zariski Topology. In this topology, the closed points (in Spec(R)) are exactly the maximal ideals
of R.

If R is a Jacobson ring, any nonempty closed set contains a maximal ideal of R. As every prime
ideal is also the limit (intersection) of maximal ideals, it follows that the set of closed points is a
dense subset of Spec(R). (MOVE LATER!!!!)

Suppose we have a homomorphism ϕ : R→ T . This induces a homomorphism

Spec(ϕ) : Spec(T )→ Spec(R)

by the map p 7→ ϕ−1(p). Note this is well-defined as preimages of prime ideals are prime.
If I is an ideal in R and J = (ϕ(I)) is an ideal in T , we have Spec(ϕ)−1(V (I)) = V (J).

Consequently, Spec(ϕ) is a continuous map for the Zariski topologies on source and target. Note
also that by definition, Spec(ϕ) ◦ Spec(ψ) = Spec(ψ ◦ ϕ).

Lemma 3.4.4. Let ϕ : R → T be a surjective homomorphism of rings. Then Spec(ϕ) is injective
and Im(Spec(ϕ)) = V (Ker(ϕ)).

Proof. To show that Spec(ϕ) is injective, note that for any p ∈ Spec(T ), p = ϕ(ϕ−1(p)) by surjec-
tivity. In particular, distinct elements of Spec(T ) get sent to distinct elements in Spec(R).

We show the second by double inclusion. Note first that the image of Spec(ϕ) is contained in
V (Ker(ϕ)) as the preimage of a prime ideal by ϕ always contains the kernel (equivalently, any prime
ideal contains 0).
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On the other hand, fixing a p to be a prime ideal containing Ker(ϕ), it suffices to show
Spec(ϕ)(ϕ(p)) = p. To do this, we show that ϕ(p) is prime, and ϕ−1(ϕ(p)) = p. First, we clearly have
p ⊆ ϕ−1(ϕ(p)). Taking any r ∈ ϕ−1(ϕ(p)), there exists r′ ∈ p such that ϕ(r) = ϕ(r′). As p contains
the kernel of ϕ, it follows r ∈ p, thus equality. To show that ϕ(p) is a prime ideal, taking x, y ∈ T
such that xy ∈ ϕ(p), choosing x′, y′ such that ϕ(x′) = x and ϕ(y′) = y, x′y′ ∈ ϕ−1(ϕ(p)) = p. Thus
x′ ∈ p or y′ ∈ p. The proof follows.

Proposition 3.4.5. Fix f ∈ R. Define

Df (R) = {p ∈ Spec(R) | f /∈ p}

These form open sets in Spec(R) and is a basis for the Zariski Topology.

Proof. First note that
Spec(R)\Df (R) = V ((f))

Noting every closed set in Spec(R) can be expressed as V (I) for some I,⋃
f∈I

Df (R) = {p ∈ Spec(R) | I ̸⊆ p} = Spec(R)\V (I)

So is a basis.

Lemma 3.4.6. Given a ring R, Spec(R) is compact.

Proof. We use the notion that Spec(R) is compact if every open cover by basis elements has a finite
subcover. Note that for any S ⊆ R,

Spec(R)\
⋃
f∈S

Df =
⋂
f∈S

(Spec(R)\Df )

=
⋂
f∈S

V ((f))

= V (
∑
f∈S

(f))

For any cover F , taking S = F , V (
∑

f∈F ((f))) = ∅. Thus,
∑

f∈F ((f)) is not contained in any prime
ideal. By Proposition 1.1.17, every proper ideal has a maximal ideal (which is prime) containing it,
meaning

∑
f∈F ((f)) = R. Then, we can write 1R as a finite linear sum of elements of F . These

elements form a fintie subset F0 that generate R, and Spec(R)\
⋃
f∈F0

Df = V (R) = ∅

Lemma 3.4.7. Let I and J be ideals in R. Then, V (I) = V (J) if and only if r(I) = r(J).

Proof. (⇒) Suppose that for every prime ideal p, I ⊆ p if and only if J ⊆ p. Then, as radicals are
intersections of prime ideals containing it, equality follows.

(⇐) Suppose for a contradiction that V (I) ̸= V (J). Without loss of generality, there exists p
such that I ⊆ p and J ̸⊆ p. Then, J ̸⊆ r(J), which contradicts definition.

Consequently, there is a bijective correspondence between radical ideals in R and closed subsets
of Spec(R). The closed subsets corresponding to prime ideals are called irreducible.

Proposition 3.4.8. If I and J are radical ideals, I ⊆ J if and only if V (J) ⊆ V (I)
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Proof. (⇒) is immediate. For (⇐), we have J ⊆ p implies I ⊆ p. As I and J are radical ideals,
they are intersections of prime ideals containing it. The proof follows.

Corollary 3.4.9. The quotient map from R into R/r((0)) is a homeomorphism. Thus, closed sets
are determied by radical ideals and are unchanged by quotients with the nilradical.

Remark 3.4.10. Given two ideals I, J of a ring R, we have

(I ∩ J) · (I ∩ J) ⊆ I · J ⊆ I ∩ J

Thus r(I · J) = r(I ∩ J) which follows from the fact V (I · J) = V (I ∩ J), supported by the identity
V (I) ∪ V (J) = V (I · J).

Also, given that I and J are radical ideals, I ∩ J is a radical ideal, whereas I · J need not be.

Lemma 3.4.11. Let R be a ring and I ◁ R. Then V (I) has a minimal element up to inclusion.
Moreover, if p ⊇ I is prime, p contains such an ideal.

Proof. Define ≤ on prime ideals containing I but is contained by p by ⊇. Take any chain T . Then
we claim T has a maximal element

⋂
p∈T p. Note first this clearly contains I, is maximal, and is

an ideal. To show it is prime, suppose xy ∈
⋂

p∈T p but x, y /∈
⋂

p∈T p. Then we can find pi, pj
such that x /∈ pi and y /∈ pj . Without loss of generality, as T is a chain, suppose pi ≤ pj . Then
as xy ∈ pj , x ∈ pj . This contradicts the ≤ condition. Thus by Zorn’s Lemma, there is a maximal
element m up to the relation ≤. This corresponds to a minimal prime containing I that is contained
in p.

3.5 Primary Decomposition

Proposition 3.5.1. Let p1, . . . pk be prime ideals of R. Let I be an ideal of R. If I ⊆
⋃k
i=1 pi, then

there is some i0 ∈ {1, . . . , k} such that I ⊆ pi0.

Proof. By induction on k. The case for k = 1 holds tautologically. For a general k, if I ⊆
⋃k
i ̸=j pi,

we are done by the inductive hypothesis. Otherwise, we can find x1, . . . , xk ∈ I such that for all
i ∈ {1, . . . , k}, xi ∈ pi but xi /∈ pj for any i ̸= j. Consider

y =
k∑
j=0

x1x2 · · ·xj−1xj+1 · · ·xk

where x0 = xk+1 = 1. Note that by construction x1x2 · · ·xj−1xj+1 · · ·xk ∈ pi if i ̸= j. As y ∈ I,
y ∈ pi for some i ∈ {1, . . . , k}. Then,

y −
k∑
j ̸=i

x1x2 · · ·xj−1xj+1 · · ·xk ∈ pi

So x1x2 · · ·xi−1xi+1 · · ·xk ∈ pi, which contradicts construction as pi is a prime ideal.

Proposition 3.5.2. Let I1, . . . , Ik be ideals of R and p be a prime ideal of R. Suppose that p ⊇⋂k
i=1 Ii. Then, there exists a i0 ∈ {1, . . . , k} such that p ⊇ Ii0. If p =

⋂k
i=1 Ii, there is a i0 such

that p = Ii0.

Proof. For the first case, suppose for a contradiction that for every i ∈ {1, . . . , k} there is an element
xi ∈ Ii such that xi /∈ p. But x1x2 · · ·xk ∈

⋂k
i=1 Ii ⊆ p and as p is prime, one of xi lies in p, a

contradiction. The second case follows immediately as a consequence, noting
⋂k
i=1 Ii ⊆ Ii0 .
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Remark 3.5.3. Noting the proof in Proposition 3.5.1, any cover of an ideal by two ideals is covered
by a single ideal.

Definition 3.5.4. An ideal I of R is called primary if it is proper and all the zero-divisors of R/I
are nilpotent.

In other words, if xy ∈ I and x, y /∈ I, there exists l, n > 1 such that xl ∈ I and yn ∈ I.
Consequently, every prime ideal is primary. The converse need not be true. Ideals (pn) ∈ Z are
primary if p is prime and n > 0 but for n > 1 is not a prime ideal.

Lemma 3.5.5. Suppose that I is a primary ideal of R. Then r(I) is a prime ideal.

Proof. Let x, y ∈ R and suppose xy ∈ r(I). Then, there is a n > 0 with xnyn ∈ I. By primarity,
xn ∈ I, or yn ∈ I, or xln ∈ I and ynk ∈ I for some l, k > 1. In any case, x ∈ I or y ∈ I.

Definition 3.5.6. Following the previous lemma, given a prime ideal p and ideal I, we say that I
is p-primary if r(I) = p.

p-primary ideals I have the property that if ab ∈ I, without loss of generality, if a /∈ I, then
b ∈ p.

Example 3.5.7. Consider Z[x, y] and the ideal (xy). Now, r((xy)) = (x, y) who is clearly prime.
However (xy) is not primary. Specifically, the radical of an ideal being prime does not imply the
original ideal is primary.

However, we have the following.

Lemma 3.5.8. Let J be a (proper) ideal of R. Suppose that r(J) is a maximal ideal. Then J is
primary.

Proof. By assumption, the nilradical of R/J is a maximal ideal (by correspondence). Thus, R/J is
local, as any maximal ideal of R/J contains r(R/J). Hence every element of R/J is either a unit
or is nilpotent. Specifically, J is primary.

Definition 3.5.9. If I, J ⊆ R are ideals in R, we write

(I : J) = {r ∈ R | rJ ⊆ I}

Note that (I : J) is also an ideal and ((0) : J) = Ann(J). When it is clear, we write x to mean (x)
for some x ∈ R (e.g. (x : I) to mean ((x) : I)).

Note the identity I ⊆ (I : J).

Proposition 3.5.10. Given ideals I, J,M of R, we have

(I :M) ∩ (J :M) = (I ∩ J :M)

Proof. By double inclusion.

Lemma 3.5.11. Let p be a prime ideal and I be a p-primary ideal. Fix any x ∈ R. Then,

1. If x ∈ I, (I : x) = R

2. If x /∈ I, r(I : x) = p
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3. If x /∈ p, (I : x) = I

Proof. The first and third cases follow immediately. For the second case, suppose y ∈ r(I : x). By
definition, there exists some n > 0 such that xyn ∈ I. As x /∈ I, yn ∈ p = r(I), so yln ∈ I for
some l > 0. Thus, y ∈ r(I). Thus r(I : x) ⊆ p. Now clearly I ⊆ r(I : x) ⊆ p. As r is monotonic,
r(I) = p ⊆ r(r(I : x)) = r(I : x) ⊆ r(p) = p, giving r(I : x) = p.

Lemma 3.5.12. Let p be a prime ideal and J1, . . . , Jk be p-primary ideals. Then J =
⋂k
i=1 Ji is

also p-primary.

Proof. Applying r,

r(J) = r(

k⋂
i=1

Ji) =

k⋂
i=1

r(Ji) = p

Thus, it remains to check that J is primary. Suppose xy ∈ J with x, y /∈ J . Then we can find
i, j ∈ {1, . . . , k} such that x /∈ Ji and y /∈ Jj . Hence there exists l, t > 0 such that yl ∈ Ji and xt ∈ Jj
(as xy ∈ Ji and xy ∈ Jj). Thus, x ∈ r(Jj) = r(J) = r(Ji) ∋ y, yielding that J is primary.

Definition 3.5.13. An ideal I ◁ R is decomposable if there exists a finite collection J1, . . . , Jk of
primary ideals in R such that I =

⋂k
i=1 Ji. The sequence is called a primary decomposition of

I. A primary decomposition is called minimal if

1. The radicals r(Ji) are distinct

2. For all i ∈ {1, . . . , k}, Ji ̸⊇
⋂
j ̸=i Ji

Note that any primary decomposition can be reduced to a minimal primarity decomposition by

1. Using Lemma 3.5.12 and replacing all primary ideals with the same radical with their inter-
section to achieve (1)

2. Remove any primary ideal that covers the entire set

Theorem 3.5.14. Let I be a decomposable ideal. Let J1, . . . , Jk be primary ideals and I = ∩ki=1Ji
be a minimal primary decomposition of I. Define pi = r(Ji) (such that pi are prime). Then,

{pi | i ∈ {1, . . . , k}} = {prime r(I : x) | x ∈ R}

Proof. Take x ∈ R. Note that (I : x) =
⋂k
i=1(Ji : x) and r(I : x) =

⋂k
i=1 r(Ji : x) by preservation

of r under intersection. Thus, by Lemma 3.5.11, r(I : x) =
⋂
i,x/∈Ji pi. If r(I : x) is prime, by

Proposition 3.5.2, r(I : x) = pi0 for some i0 ∈ {1, . . . , k}.
Conversely, taking any i0 ∈ {1, . . . , k}, we can find a x ∈ Ji0 such that x /∈ Ji for i ̸= i0 by

minimality of decomposition. Given such x, r(I : x) =
⋂
i,x/∈Ji pi = pi0 by above.

Remark 3.5.15. By Theorem 3.5.14, we can associate any decomposable ideal I in R with a unique
set of prime ideals. Specifically, this set is fixed for any primary decomposition. We then say that
these prime ideals are associated with I. Also note that the intersection of these primes give r(I)
(by choosing x to be a unit and taking (I : x) = I =

⋂
i pi).

Given an ideal that is decomposable into radical ideals, it has a minimal primary decomposition
by prime ideals, and these prime ideals are the associated primes. Noting Proposition 3.5.2, any
two minimality primary decomposition by prime ideals of a radical ideal coincide.

While out of scope, any minimal primary decomposition of a radical consists only of prime ideals.
Specifically, a decomposable radical ideal has a unique primary decomposition by prime ideals.
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Example 3.5.16. If n = ±pn1
1 · · · p

nk
k ∈ Z where pi are distinct prime numbers and ni > 0, a

parimary decomposition of (n) is given by (n) =
⋂k
i=1(p

ni) by the Chinese Remainder Theorem.
The set of prime ideals associated with this is given by {p1, . . . , pk}.

Example 3.5.17. Consider the ideal (x2, xy) ⊆ C[x, y]. Now,

(x2, xy) = (x) ∩ (x, y)2

so the associated set of prime ideals is {(x), (x, y)}. To see equality, note that elements of (x, y)2

are pf tje form x2P (x, y)+xyQ(x, y)+y2T (x, y), thus the right side consists of polynomials of such
form where T (x, y) is divisible by x. Double inclusion follows. To see that these are both primary,
we note C[x, y]/(x) ≃ C[y] meaning (x) is prime (thus primary), and from C[x, y]/(x, y) ≃ C, using
Lemma 3.5.8, (x, y)2 is also primary.

Lemma 3.5.18. Let I be a decomposable ideal. Let S be the set of prime ideals associated with
some minimal primary decomposition of I. View S as a poset by inclusion. Then, the minimal
elements of S coincide with the minimal elements of V (I).

Proof. The minimal elements of V (I) denoted V (I)min are minimal elements of S denoted Smin by
definition (by considering any primary decomposition, we can throw in any element of Imin into the
decomposition to make a decomposition containing this element).

To show the other direction, note that r(I) =
⋂

p∈S p, thus r(I) =
⋂

p∈Smin
p. Suppose that

p0 ∈ Smin and that p0 /∈ V (I)min. Then, we can find a p′0 ∈ V (I) such that I ⊆ p′0 ⊊ p0. By
Proposition 3.5.2, we can find a p ∈ Smin such that p ⊆ p′0. This contradicts minimality of p0,
giving Smin = V (I)min.

Definition 3.5.19. Elements of Smin are called isolated or minimal prime ideals associated with
I. The elements S\Smin are called embedded prime ideals.

Remark 3.5.20. If I is a decomposable radical ideal, the associated primes of I are isolated. This
follows immediately from the fact that I has a minimal primary decomposition by prime ideals.

If I is a decomposable ideal, then V (I)min is a finite set. By the previous lemma, this is exactly
the isolated ideals associated with I.

3.6 Noetherian Rings

Definition 3.6.1. Let R be a ring. We say that R is noetherian if every ideal of R is finitely
generated. That is, for any I ◁ R, I = (r1, . . . , rk) for some ri ∈ R.

Example 3.6.2. Fields and PIDs are noetherian, as every ideal is generated by a single element.
For instance, Z, C are noetherian. Given any field K, K[x] is also noetherian as a polynomial over
a field is an ED (which is a PID).

Lemma 3.6.3. The ring R is noetherian if and only if for any chain I1 ⊆ I2 ⊆ · · · is a chain of
ideals, there exists a k ≥ 1 such that Ik = Ik+i =

⋃∞
t=1 It for all i ≥ 0.

Proof. (⇒) Suppose R is noetherian. Let I1 ⊆ I2 ⊆ · · · . The set
⋃∞
t=1 It is an ideal, who is finitely

generated by assumption. Given such a finite set, it must lie in Ik for some k ≥ 1. The conclusion
follows.

(⇐) Suppose whenever I1 ⊆ I2 ⊆ · · · is an ascending chain of ideals, k ≥ 1 such that Ik = Ik+i =⋃∞
t=1 It for all i ≥ 0. Let J ⊆ R be an ideal. Suppose for a contradiction J is not finitely generated.

Then we can inductively produce a chain of strictly increasing ideals (by choosing elements not yet
in the ideal produced by the prefix set), which contradicts our assumption.
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Lemma 3.6.4. Let R be a noetherian ring and I ◁ R. Then R/I is noetherian.

Proof. Let q : R → R/I be the quotient map. Let J be any ideal of R/I. The ideal q−1(J) is
finitely generated by assumption, and the image of these generators generate J .

Lemma 3.6.5. Let R be a noetherian ring and S ⊆ R be a multiplicative set. Then RS is noetherian.

Proof. Let λ : R → RS be the natural ring homomorphism. By Lemma 2.1.18 the ideal generated
by λ(λ−1(I)) = I. Thus, the image of any finite set of generators of λ−1(I) under λ generates I.

Lemma 3.6.6. Let R be a noetherian ring and M be a finitely generated R-module. Then any
submodule of M is also finitely generated.

Proof. By assumption we have a surjective map of R-modules q : Rn → M for some n ≥ 0. To
show that N ⊆ M is finitely generated, it is enough to show that q−1(N) is finitely generated. As
this lies in Rn, we may assume that M = Rn.

We now do induction on n. The case n = 1 is immediate as submodules of R correspond to
ideals and R is noetherian. Suppose ϕ : Rn → R be the projection on the last factor. Let N ⊆ Rn

be a submodule. We have the exact sequence

0→ N ∩Rn−1 → N → ϕ(N)→ 0

where Rn−1 is viewed as a submodule of Rn via the map (r1, . . . , rn−1) 7→ (r1, . . . , rn−1, 0). ϕ(N)
is finitely generated as it is an ideal in R, and N ∩ Rn−1 is finitely generated by the inductive
hypothesis.

Let a1, . . . , ak ∈ N ∩ Rn−1 generate N ∩ Rn−1 and b1, . . . , bl ∈ ϕ(N) generate ϕ(N). Let
b′1, . . . , b

′
l ∈ Rn be such that ϕ(b′i) = bi for all i ∈ {1, . . . , l}. Then, {a1, . . . , ak, b′1, . . . , b′k} generate

N , noting (N ∩Rn−1)× ϕ(N) ≃ N .

Lemma 3.6.7. Let R be a noetherian ring. If I ◁ R, there is a t ≥ 1 such that r(I)t ⊆ I.
Consequently, some power of the nilradical of R is the 0-ideal.

Proof. Noting r(I) is an ideal, it is finitely generated, say r(I) = (a1, . . . , ak) for some ai ∈ R.
By definition of the radical, there exists an n ≥ 1 such that ani ∈ I for all i ∈ {1, . . . , k}. Define
t = k(n− 1) + 1. Then, r(I)t ⊆ (an1 , . . . , a

n
k) ⊆ I where the first inclusion comes from the pigenhole

principle.

Theorem 3.6.8 (Hilbert Basis Theorem). Let R be noetherian. Then, the polynomial ring R[x] is
also noetherian.

Proof. Let I ⊆ R[x] be an ideal. The leading coefficients of the non-zero polynomials in I (with 0)
form an ideal J of R. As R is noetherian, J has a finite set of generators, say a1, . . . , ak. For each
i ∈ {1, . . . , k} choose fi ∈ I such that fi(x)− aixni has degree lower than ni. Define n = maxi ni.
Let I ′ = (f1(x), . . . , fk(x)) ⊆ I be the ideal generated by fi(x). Define M to be the polynomials in
I with degree less than n.

Suppose we choose f(x) ∈ I\(I ′ +M) of smallest possible degree m. Pick a ∈ R such that
f − axm has degree lower than m. As a ∈ J , we have a = r1a1 + · · ·+ rkak for some r1, . . . , rk ∈ R.
Suppose m ≥ n. Then,

f(x)− r1f1(x)xm−n1 − · · · − rkfk(x)xm−nk

is degree less than m (by cancelling leading term) and lies in I by construction. By minimality of
m, this lies in I ′ +M , so f(x) ∈ I ′ +M , which is a contradiction. If m < n, f(x) ∈ M , another
contradiction. Consequently, I = I ′ +M .
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R is an R-submodule (ideal) of the R-module consisting of polynomials of degree less than n,
which is clearly finitely generated as an R-module. Thus, by Lemma 3.6.6, M is finitely generated as
an R-module by g1(x), . . . , gt(x) ∈M . Then, g1(x), . . . , gt(x), f1(x), . . . , fk(x) is a set of generators
of I as an ideal.

Remark 3.6.9. As a consequence of the Hilbert Basis theorem, we see that R[x1, . . . , xk] is noethe-
rian for any k ≥ 0. By noting Lemma 3.6.4, we see that every finitely generated algebra over a
noetherian ring is noetherian.

Theorem 3.6.10 (Artin-Tate). Let T be a ring and R,S ⊆ T be subrings. Suppose R ⊆ S and
R is noetherian. Suppose further that T is finitely generated as an R-algebra and that T is finitely
generated as an S-module. Then, S is finitely generated as an R-algebra.

Proof. Let r1, . . . , rk be generators of T as an R-algebra. Let t1, . . . , tl be generators of T as an
S-module. By assumption, for any a ∈ {1, . . . , k} we can write

ra =
l∑

j=1

sjatj

where sja ∈ S. Similarly, for any b, d ∈ {1, . . . , k} we have,

tbtd =

l∑
j=1

sjbdtj

where sjbd ∈ S, both of which we use the fact the left side in an element of T .
Define S0 to be the R-subalgebra generated by all sja and sjbd. As every element of T can

be written as an R-linear combination of products of ra, we see that T is finitely generated as an
S0-module with t1, . . . , tl. Note also that S0 is a finitely generated R-algebra by construction.

The R-algebra S is naturally an S0 algebra (by inclusion), specifically an S0 module, and a S0
submodule of T . As R is noetherian, S0 is noetherian (as it is finitely generated by R). As S is a
submodule of a finitely generated S0-module (T ), S is also finitely generated as a S0 submodule by
Lemma 3.6.6. Specifically, S is finitely generated as an S0-algebra, and as S0 is finitely generated
over R, so is S.

R S0

R[x1, . . . , xk] T S

ι

⊇

Simple illustration above with abuse of notation, where dotted arrows are induced S0 modules.

Definition 3.6.11. Let I ◁ R. We say that I is irreducible if whenever I1 and I2 are ideals of R
and I = I1 ∩ I2, I = I1 or I = I2. We say that an ideal is decomposable by irreducible ideals
or dic if it has a finite intersection of irreducible ideals.

Proposition 3.6.12. Given I ◁ R, and R is noetherian, there exists irreducible ideals I1, . . . , Ik
such that I =

⋂k
i=1 Ii

Proof. Suppose J is not dic. Specifically, J is not irreducible, and there exists ideals M,N such
that J = M ∩N and J ⊊ M and J ⊊ N . As J is not dic, either N or M is not dic. Without loss
of generality, suppose M is not dic. Repeating this produces a strictly increasing chain of non-dic
ideals, contradicting the fact R is noetherian.
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Proposition 3.6.13. Irreducible ideals are primary.

Proof. Let J be an irreducible ideal and suppose that J is not primary. Then, there exists x ∈ R/J
who is a zero-divisor but not nilpotent. Let q : R → R/J be the quotient map. Now, consider the
sequence

Ann(x) ⊆ Ann(x2) ⊆ Ann(x3) ⊆ · · ·

Noting R/J is noetherian, the sequence must stop at some k such that

Ann(xk) = Ann(xk+1) = Ann(xk+2) = · · ·

for some k ≥ 1.
Consider the ideal (xk) ∩ Ann(xk). If λxk ∈ (xk) ∩ Ann(xk) for some λ ∈ R/J , λx2k = 0,

thus λ ∈ Ann(x2k). As Ann(x2k) = Ann(xk), λxk = 0. Thus, (xk) ∩ Ann(xk) = (0). That is,
q−1(xk) ∩ q−1(Ann(xk)) = J . On the other hand, (xk) ̸= (0) by nilpotence and Ann(xk) ̸= 0 by
construction. Hence, q−1(xk) ̸= J and q−1(Ann(xk)) ̸= J . This contradicts irreducibility. Thus, J
is primary.

Example 3.6.14. Primary ideals are not necessarily irreducible. Consider the ideal (x, y)2 ⊆
Q[x, y]. This is primary as r((x, y)2) = (x, y) is a maximal ideal by Lemma 3.5.8. However, this is
the intersection of ideals (x, y2) and (x2, y).

Proposition 3.6.15 (Lasker-Noether). Let R be a noetherian ring. Then every ideal of R is
decomposable.

Proof. Follows from Propositions 3.6.12 and 3.6.13.

Let R be a noetherian ring and I ⊆ R be a radical ideal. As a consequence of Lasker-Noether
and the remark after primary decomposition, we have a unique set {q1, . . . , qk} of distinct prime
ideals in R such that

• I =
⋂k
i=1 qi

• for all i ∈ {1, . . . , k}, qi ̸⊇
⋂
j ̸=i qj

Moreover, the set {q1, . . . , qk} is the set of prime ideals that are minimal among the prime ideals
containing I. In other words, V (I) is the union of the closed sets V (qi).

If p1, . . . , pl is the set of minimal prime ideals of R, then there is a natural injective homomor-
phism of rings

R/r((0)) ↪→
l∏

i=1

R/pi

4 Extensions

4.1 Integral Extensions

Definition 4.1.1. Let B be a ring and A ⊆ B be a subring. Let b ∈ B. We say that b is
integral over A if there is a monic polynomial in A[x] that annihalates b. Concretely, we have a
P (x) = xn + an−1x

n−1 + . . . a0 ∈ A[x] such that P (b) = 0.
We say that b is algebraic over A if there is a Q(x) ∈ A[x] such that Q(b) = 0.

Note that if A is a field, b is algebraic over A if and only if it is integral over A.

23



Definition 4.1.2. Let S ⊆ B be a subset, A ⊆ B be a subring. Write A[S] for the intersection of
all the subrings of B which contain A and S. Note that A[S] is naturally an A-algebra.

As usual notation, we omit the set notation when it is clear (e.g., we write A[b] for A[{b}]). If
S is finite, we have

A[b1, . . . , bk] = {Q(b1, . . . , bk) | Q(x1, . . . , xk) ∈ A[x1, . . . , xk]}

which is the set of polynomials in A evaluated at {b1, . . . , bk}. Also Consequently, we have

A[b1, . . . , bk] = A[b1] · · · [bk]

Proposition 4.1.3. Let R be a ring and M be a finitely generated R-module. Let ϕ : M → M
be a homomorphism of R-modules. Then there exists a monic polynomial Q(x) ∈ R[x] such that
Q(ϕ) = 0.

Proof. By assumption, there is a surjective homomorphism of R-modules λ : Rn → M for some
n ≥ 0. Let b1, . . . , bn be the natural basis for Rn. For each bi, choose an element vi ∈ Rn such
that λ(vi) = ϕ(λ(bi)). Define a homomorphism of R-modules ϕ̃ : Rn → Rn by ϕ̃(bi) = vi. By
construction, we have λ ◦ ϕ̃ = ϕ ◦ λ, thus λ ◦ ϕ̃n = ϕn ◦ λ for all n ≥ 0. Hence, it is sufficient to find
a monic polynomial Q(x) ∈ R[x] such that Q(ϕ̃) = 0. We may therefore assume that M = Rn.

Now, ϕ is described by an n × n matrix C ∈ Matn×n(R). We thus need to find a monic
polynomial Q(x) ∈ R[x] such that Q(C) = 0.

Let h : Z[x11, x12, . . . , x21, x22, . . . , xnn] → R be a ring homomorphism sending xij to cij .
Let D be a matrix whose image under h is C. If there is a monic polynomial T (x) ∈
(Z[x11, x12, . . . , x21, x22, . . . , xnn])[x] such that T (D) = 0, then the monic polynomial Q(x) whose
coefficients are images of the coefficients of T (x) under h has the property that Q(C) = 0. Thus it
is sufficient to show for R = Z[x11, x12, . . . , x21, x22, . . . , xnn].

Let K be the fraction field of R. The natural homomorphism of rings R → K is injective as
R = Z[x11, x12, . . . , x21, x22, . . . , xnn] is a domain. We may thus view R as a subring of K.

By Cayley-Hamilton, the polynomial Q(x) = det(xI − C) ∈ K[x] is monic and Q(C) = 0 when
C is viewed as an element of Matn×n(K). Since Q(x) is a polynomial with coefficients of C, it has
coefficients in R.

Proposition 4.1.4. Let A be a subring of the ring B. Let b ∈ B and let C be a sunbring of B
containing A and b. Then,

1. If the element b ∈ B is integral over A, then the A-algebra A[b] is finitely generated as an
A-module

2. If C is finitely generated as an A-module, then b is integral.

Proof. (i) If b is integral over A, we have

bn = −an−1b
n−1 − · · · − a1b− a0

for some ai ∈ A. Thus bn+k is in the A-submodule of B generated by 1, b, . . . , bn−1 for all k ≥ 0. In
particular, A[b] is generated by 1, b, . . . , bn−1 as an A-module.

(ii) Let [b] : C → C be the homomorphism of A-modules such that [b](v) = b · v for all v ∈ C.
By Proposition 4.1.3, there is a monic polynomial Q(x) ∈ A[x] such that Q([b]) = 0. In particular,
taking Q([b])(1) shows b is integral over A.
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Lemma 4.1.5 (Generalization of Tower Law). let ϕ : R → T be a homomorphism of rings and
let N be a T -module. If T is finitely generated as an R-module and N is finitely generated as an
T -module, N is finitely generated as an R-module.

Proof. Suppose t1, . . . , tk ∈ T are generators of T as an R-module and l1, . . . , ls are generators of
N as a T -module. Then, tilj are generators of N as an R-module.

Corollary 4.1.6. Let A be a subring of B. Let b1, . . . , bk ∈ B be integral over A. Then, A[b1, . . . , bk]
is finitely generated as an A-module.

Proof. By Proposition 4.1.4, A[b1] is finitely generated as an A-module, and A[b1, b2] = A[b1][b2] is
finitely generated as an A[b1]-module, thus is finitely generated as an A-module. The proof follows
by induction.

Corollary 4.1.7. Let A be a subring of B. The subset of elements of B which are integral over A
form a subring of B.

Proof. Let b, c ∈ B be integral. Then, b + c, bc ∈ A[b, c] and is finitely generated as an A-module.
Thus by Proposition 4.1.4, b+ c and bc are integral over A.

Definition 4.1.8. Let ϕ : A → B be a ring homomorphism. We say that B is integral over A if
all the elements of B are integral over ϕ(A).

B is finite over A, or a finite A-algebra if B is a finitely generated ϕ(A)-module.

Note the identity that B is a finite A-algebra if and only if B is a finitely generated integral
A-algebra.

Definition 4.1.9. If A is a subring of a ring B, the set of elements of B which are integral over A
is called the integral closure of A in B.

If A is a domain and K is the fraction field of A, A is said to be integrally closed if the integral
closure of A in K is A.

Example 4.1.10. Z is integrally closed, and if K is a field, so is K[x]. The integral closure of Z in
Q(i) is Z(i).

Lemma 4.1.11. Let A ⊆ B ⊆ C, wehere A is a subring of B and B is a subring of C. If B
is integral over A and C is integral over B, then C is integral over A. Let c ∈ C. We have by
assumption,

cn + bn−1c
n−1 + · · ·+ b0 = 0

for some bi ∈ B. Define B′ = A[b0, . . . , bn−1]. We use Proposition 4.1.4. Now, c is integral over B′

and so B′[c] is finitely generated as a B′-module. Thus B′[c] is finitely generated as an A-module.
Thus c is integral over A.

Consequently, the integral closure in C of the integral closure of A in B is the integral closure
of A in C.

Lemma 4.1.12. Let A be a subring of B. Let S be a multiplicative subset of A. Suppose that B
is integral (respectively finite) over A. Then the natural ring homomorphism AS → BS makes BS
into an integral (respectively finite) AS-algebra.
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Proof. We first prove the integrality case. Suppose that B is integral over A. We use the natural
ring homomorphism from AS → BS . Note first that this map is injective.

Let b/s ∈ BS where b ∈ B and s ∈ S. By assumption, we have

bn + an−1b
n−1 + · · ·+ a0 = 0

for some ai ∈ A. Thus,

(b/s)n + (an−1/s)(b/s)
n−1 + · · ·+ a0/s

n = (1/sn)(bn + an−1b
n−1 + · · ·+ a0 = 0) = 0/1

Thus, b/s is integral over AS .
For the finiteness, suppose that a1, . . . , ak are generators for B as an A-module. Then

a1/1, . . . , ak/1 ∈ BS are generators of BS as an AS module, so BS is also finite over AS .

Lemma 4.1.13. Suppose that C is a subring of a ring D. Suppose that D is a domain and that D
is integral over C. Then D is a field if and only if C is a field.

Proof. If either of the rings is 0, then both are the 0 ring, and the proof follows. We now suppose
that C and D are not the zero ring.

(⇒) Suppose that D is a field. Let c ∈ C\{0}. We want to show that c−1 ∈ D lies in C. By
assumption, D is integral over C, so there is a polynomial P (t) = tn + an−1t

n−1 + · · · + a0 ∈ C[t]
such that P (c−1) = 0 Thus, cn−1P (c−1) = 0. That is,

c−1 + an−1 + · · ·+ a0c
n−1 = 0

implying that c−1 ∈ C.
(⇐) Suppose that C is a field. Take d ∈ D\{0}. We want to show that d has an inverse in D.

Let C[t] → D be the C-algebra sending t to d. The kernel of this map is a prime ideal as D is a
domain, and is non-zero as d is integral over C. Prime ideals are maximal in C[t] as it is a PID, so
the image of ϕ is a field, meaning d has an inverse in D.

Corollary 4.1.14. Let A be a subring of B and ϕ : A→ B be the inclusion map. Suppose that B
is integral over A. Let q be a prime ideal of B. Then q∩A is a maximal ideal of A if and only if q
is a maximal ideal of B.

Proof. The induced map A/(q ∩ A) → B/q is injective as the natural map from A to B/q has
kernel q ∩ A. This makes B/q into an integral A/(q ∩ A) algebra, by considering the same monic
polynomial in (A/(p ∩ A)[x]). Note that these are both domains, so the proof follows by Lemma
4.1.13.

Theorem 4.1.15 (Going Up Theorem (Partial)). Let A be a subring of B and let ϕ : A→ B be the
inclusion map. Suppose that B is integral over A. Then Spec(ϕ) : Spec(B)→ Spec(A) is surjective.

Proof. Write Bp for the localisation Bϕ(A/p) of the ring B at the multiplicative set ϕ(A/p). By lemma
2.1.12, B is isomorphic to the localisation of B at p when B is viewed as an A-module. We thus
have a unique ring homomorphism ϕp : Ap → Bp such that ϕp(a/1) = ϕ(a)/1. Write λA : A → Ap

and λB : B → Bp for the natural ring homomorphisms. Then, we have λB ◦ ϕ = ϕp ◦ λA. This
induces a commutative diagram

Spec(Bp) Spec(B)

Spec(Ap) Spec(A)

Spec(λB)

Spec(ϕp) Spec(ϕ)

Spec(λA)

26



By Lemma 2.1.22, p is the image of the maximal ideal m of Ap under the map Spec(λA). Thus it
suffices to show that there is a prime ideal q in Bp such that ϕ−1

p (q) = Spec(ϕp)(q) = m. By Lemma
4.1.12, Bp is integral over Ap. By Corollary 4.1.14, choosing any maximal ideal q of Bp, ϕ−1

p (q) is
also a maximal ideal. As Ap is local, m = ϕ−1

p (q).

Corollary 4.1.16. Let ϕ : A→ B be a homomorphism of rings. Suppose that B is integral over A.
Then the map Spec(ϕ) : Spec(B)→ Spec(A) is closed.

Proof. Let p be an ideal of B. We want to show that Spec(ϕ)(V (p)) is closed in Spec(A). Let
qp : B → B/p be the quotient map, and define µ := qp ◦ ϕ : A → Bp. Also let qµ : A → A/ ker(µ)
be the quotient map, and ψ : A/ ker(µ) → B be the ring homomorphism induced by µ Then, we
have the following commutative diagram :

A B

A/ker(µ) B/p

ϕ

qµ
µ

qp

ψ

As B is integral over A, B/p is integral over A/ ker(µ). Also, ψ is injective by construction. By
Theorem 4.1.15, we have Spec(ψ)(Spec(B/p)) = Spec(A/ ker(µ)). By Lemma 3.4.4, we have

Spec(qp)(Spec(B/p)) = V (ker(qp)) = V (p)

and
Spec(qµ)(Spec(A/ ker(µ))) = V (ker(µ))

Thus, Spec(ϕ)(V (p)) = V (ker(µ)), which is closed.

Consequently, if ϕ is surjective, then Spec(ϕ) is a closed map. Specifically, Spec(ϕ) is injective
and continuous, thus is a homeomorphism onto its image.

Proposition 4.1.17. Let ϕ : A→ B be a ring homomorphism and suppose that B is finite over A.
Then the map Spec(ϕ) has finite fibres (for any p ∈ Spec(A), Spec(ϕ)−1({p}) is finite).

Proof. Let q : A→ A/ ker(ϕ) be the quotient map. The map Spec(q) has finite fibres (by bijective
correspondence between primes). We can therefore consider A/ ker(ϕ) ≃ im(ϕ) instead of A, and
view it as a subring of B.

Now let p be a prime ideal of A. We want to show that there are finitely many prime ideals q
such that q ∩A = p (q ∩A is the preimage of q under inclusion).

Let p be the ideal of B generated by p. Let ψ be the ring homomorphism induced by ϕ.

Spec(B/p) Spec(B)

Spec(A/p) Spec(A)

Spec(q)

Spec(ψ) Spec(ϕ)

Spec(q)

Any prime ideal q ∈ Spec(B) such that q ∩ A = p has the property that q ⊇ p, we see any such
prime ideal lies in the image of Spec(q). The corresponding prime ideals of Spec(B/p) are prime
ideals I such that ψ−1(I) = (0). Thus, it suffices to show that Spec(ψ)−1((0)) is a finite set.
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Let S = (A/p)\{0}. Define λA/p → A/p→ (A/p)S and λB/p : B/p→ (B/p)ψ(S) be the natural
ring homomorphisms. There is a natural ring homomorphism ψS that is compatible with these
morphisms to obtain a commutative diagram

Spec((B/p)ψ(S)) Spec(B/p)

Spec((A/p)ψ(S)) Spec(A/p)

Spec(λB/p)

Spec(ψS) Spec(ψ)

Spec(λA/p)

If q ∈ Spec(B/p), then ψ−1(q) = (0) if and only if q ∩ ψ(S) = ∅.

5 Noether Normalization + Hilbert’s Nullstellensatz

Theorem 5.0.1 (Noether’s Normalization Lemma). Let K be a field and R be a non-zero finitely
generated K-algebra. Then, there exists an injective homomorphism of K-algebras K[y1, . . . , yt]→ R
for some t ≥ 0 such that R is finite as a K[y1, . . . , yt] module.

Proof. We only prove the case for when K is infinite.
Let r1, . . . , rn ∈ R be the generators of minimal size of R as a K-algebra. We prove by induction

on n. If n = 1, then R ≃ K[x] or R ≃ K[x]/I for some proper ideal I in K[x]. In the first case,
the proof follows by setting t = 1. In the second case, we set t = 0, noting that the K-dimension of
K[x]/I is bounded above by the degree of any non-zero polynomial in I. So this is true for n = 1.

Up to relabelling, we may assume there is a k ∈ {1, . . . , n} such that for all i ∈ {1, . . . , k},
ri is not algebraic over K[r1, . . . , ri−1] and that rk+i is algebraic over K[r1, . . . , rk]. We do this
by repeatedly choosing elements that are not algebraic over K[r1, . . . , rk] from k = 0. In the case
that every generator is algebraic over K, they are integral over K. Then setting t = 0, it follows
R = K[r1, . . . , rn] is finite over K.

Now we may also assume that k < n, as else we may set t = k = n, sending xi to the generators.
Thus, rn is algebraic over K[r1, . . . , rn−1]. Let P1(x) ∈ K[r1, . . . , rn−1][x] be a non-zero polynomial
such that P1(rn) = 0. Since K[r1, . . . , rn−1] is the image of K[x1, . . . , xn−1] sending xi to ri, there
is a non-zero polynomial

P (x1, . . . , xn) ∈ K[x1, . . . , xn−1][xn] = K[x1, . . . , xn]

such that P (r1, . . . , rn) = 0.
Now let F (x1, . . . , xn) be the sum of monomials of degree d = deg(P ) which appear in P , such

that deg(P − F ) < d. Choose λi ∈ K such that

F (λ1, . . . , λn−1, 1) ̸= 0

To see why such set exists, as F is a homogenous polynomial, the polynomial F (x1, . . . , xn−1, 1)
is a sum of homogenous polynomials of distinct degrees and thus is non-zero (else by grouping we
see the original polynomial is zero). This has some set that evaluates to a nonzero value, as K is
infinite. To see this, we use the fact polynomials in K[x] can only have finitely many roots, so it
cannot vanish on every F (x, λ2, . . . , λn−1, 1) ∈ K[x].
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Setting ui = ri − λirn, we have

0 = P (r1, . . . , rn)

= P (u1 + λ1rn, . . . , un−1 + λn−1rn, rn)

= F (λ1, . . . , λn−1, 1)r
d
n +O(rd−1

n )

In particular, rn is integral over K[u1, . . . , un−1]. By the inductive hypothesis, there is an injective
homomorphism of K-algebras

K[y1, . . . , yt]→ K[u1, . . . , un−1]

for some t ≥ 0 such that K[u1, . . . , un−1] is integral over K[y1, . . . , yt]. Thus, R = K[r1, . . . , rn] =
K[u1, . . . , un − 1][rn] is integral over K[y1, . . . , yt] (transitivity of integrality, algebraicity follows
immediately).

Corollary 5.0.2 (Weak Nullstellensatz). Let K be a field and R be a finitely generated K-algebra.
Suppose that R is a field. Then R is finite over K.

Proof. Let K[y1, . . . , yt] → R as in Noether’s Normalization Lemma. By Theorem 4.1.15,
Spec(R) → Spec(K[y1, . . . , yt]) is surjective. As R is a field, Spec(R) has one element, so
Spec(K[y1, . . . , yt]) has one element. Thus t = 0 (else, consider the ideal (y1), and note it is
contained in some maximal ideal). Consequently, R is integral over K. As R is finitely generated
over K, it must be finite over K.

Corollary 5.0.3. Let K be an algebraically closed field. Let t ≥ 1. The ideal of K[x1, . . . , xt] is
maximal if and only if it has the form (x1 − a1, . . . , xt − at) for some a1, . . . , at ∈ K. A polynomial
Q lies in this ideal if and only if Q(a1, . . . , at) = 0.

Proof. We start with the first statement. (⇐) The ideal (x1 − a1, . . . , xt − at) is the kernel of the
evaluation map

K[x1, . . . , xt]→ K p(x1, . . . , xt) 7→ p(a1, . . . , at)

which is a surjective morphism onto a field, thus the kernel is a maximal ideal. (⇒) Suppose
that I is maximal. K[x1, . . . , xt]/I is a field, which is also a finitely generated K-algebra. Thus,
by Corollary 5.0.2, K[x1, . . . , xt]/I is finite, thus algebraic over K. As K is algebraically closed,
K[x1, . . . , xt]/I ≃ K.

K[x1, . . . , xt]

K[x1, . . . , xt]/I K

qI
ϕ

ψ

Consider ϕ as the induced homomorphism of K-algebras. By construction, I contains the ideal
(x1− ϕ(x1), . . . , xt− ϕ(xt)) (by isomorphism, as ϕ takes this to 0, qI also takes this to 0). Ideals of
this form are maximal, so in particular this coincides with I.

For the second part, note the homomorphism of K-algebras ψ : K[x1, . . . , xt] → K such that
ψ(P (x1, . . . , xt)) = P (a1, . . . , at) is surjective and the ker(ψ) ⊇ (x1 − a1, . . . , xt − at). As ψ is
nonzero, ker(ψ) is maximal, and ker(ψ) = (x1 − a1, . . . , xt − at).

Corollary 5.0.4. Let K be a field. Let R be a finitely generated K-algebra. Then R is a Jacobson
ring.
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Proof. Let I ⊆ R be an ideal. We want to show that the Jacobson radical of I coincides with the
radical of I. So, we want to show that the nilradical of R/I coincides with the Jacobson radical of
(0) in R/I. Thus we may replace R with R/I and suppose that I = (0).

Let f ∈ R and suppose that f is not nilpotent. It is sufficient by showing that there exists a
maximal ideal m in R such that f /∈ m. Let S = {1, f, f2, . . . }. As f is not nilpotent, the localisation
is non-zero. Let q be a maximal ideal of RS . Since RS is a finitely generated K-algebra, the quotient
ring is also finitely generated over K. By weak Nullstellensatz, the canonical homomorphism of rings
K → RS/q makes RS/q into a finite field extension of K. Define ϕ to be the natural homomorphism
that composes the homomorphisms from R→ RS and RS → RS/q. Then im(ϕ) is a domain, which
is integral over K. By Lemma 4.1.13, this is a field. Thus ker(ϕ) is maximal ideal of R.

By construction, ker(ϕ) is the inverse image of q by the natural homomorphism R → RS . As
f/1 is a unit in RS , f/1 /∈ q, thus f /∈ ker(ϕ). We set m = ker(ϕ) and are done.

Corollary 5.0.5 (Strong Nullstellensatz). Let K be an algebraically closed field. Let t ≥ 1 and
I ⊆ K[x1, . . . , xt] be an ideal. Define

Z(I) = {(c1, . . . , ct) ∈ Kn | P (c1, . . . , cn) = 0 for all P ∈ I}

Let Q(x1, . . . , xt) ∈ K[x1, . . . , xt]. Then Q ∈ r(I) if and only if Q(c1, . . . , ct) = 0 for all (c1, . . . , ct) ∈
Z(I).

Proof. Let R = K[x1, . . . , xt].
(⇒) Take any Q ∈ r(I) and (c1, . . . , ct) ∈ Z(I). We want to show Q(c1, . . . , ct) = 0. If Q ∈ r(I),

there exists some m such that Qm ∈ I. Thus, Qm(c1, . . . , ct) = 0. As we are in a field, this shows
Q(c1, . . . , ct) = 0.

(⇐) Let Q(x1, . . . , xt) ∈ K[x1, . . . , xt] and suppose that Q(c1, . . . , ct) = 0 for all (c1, . . . , ct) ∈
Z(I). Suppose for contradiction that Q /∈ r(I). By Corollary 5.0.4, R is a Jacobson ring, thus there
exists a maximal ideal m ⊇ I and Q /∈ m.

By Corollary 5.0.3, we have m = (x1 − a1, . . . , xt − at) for some ai. By construction,
P (a1, . . . , at) = 0 for all P ∈ I ⊆ m. Thus (a1, . . . , at) ∈ Z(I). By Corollary 5.0.3 again,
Q(a1, . . . , at) ̸= 0 as Q /∈ m, which is a contradiction. Thus Q ∈ r(I).

Lemma 5.0.6. Let K be a field. Let t ≥ 1 and let P (x1, . . . , xt) and let P (x1, . . . , xt) ∈
K[x1, . . . , xt]. Then there exists a non-zero prime ideal in K[x1, . . . , xt] which does not contain
P (x1, . . . xt).

Proof. Let L = K(x1, . . . , xt−1) be the quotient field of K[x1, . . . , xt−1] where L = K if t = 1. Let

ι : K[x1, . . . , xt] = K[x1, . . . , xt−1][xt]→ L[xt]

be the natural injective map. If there is a prime ideal p in L[xt] such that ι(P ) /∈ p, the prime ideal
ι−1(p) will not contain P , so we may assume that t = 1.

Write xt = x1 = x so K[x1, . . . , xt] = K[x]. Assume without loss of generality that P (x) is
monic. Also assume that P (x) is not constant (else any maximal ideal suffices).

Let Q be an irreducible factor of 1 + P . The ideal (Q) does not contain P as else (Q) = K[x],
but (Q) is prime.

Lemma 5.0.7 (Alternative Proof for Weak Nullstellensatz). Let K be a field and R be a finitely
generated K-algebra. Suppose that R is a field. Then R is finite over K.
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Proof. Let r1, . . . , rk be generators of R over K. Suppose that ri are numbered in a way that
r1, . . . , rl are algebraically independent over K and that rk+l are algebraic over K(r1, . . . , rl).

We may also take l ≥ 1 as else R is a finite field extension of K (as R is integral and finitely
generated K-algebra), thus we are done.

As R is a field, the quotient field L ≃ K(x1, . . . , xl) of K[x1, . . . , xl] ≃ K[r1, . . . , rl] (by first
isomorphism) can be viewed as a subfield of R. Now R is generated by rl+1, . . . , rk as an L-algebra
and generators are algebraic over L as they are algebraic over K(r1, . . . , rl). As L is a field, they
are integral over L, and thus R is a finite field extension of L.

By the Artin-Tate Lemma, L is finitely generated as an K-algebra. In particular K(x1, . . . , xl) ≃
L is finitely generated as a K[x1, . . . , xl] algebra. Let P1(x)/Q1(x), . . . , Pa(x)/Qa(x) be the
generators of K(x1, . . . , xl) as an K[x1, . . . , xl]-algebra. Let Q(x) =

∏a
i=1Qi(x) and S =

{1, Q(x), Q2(x), . . . }. As K[x1, . . . , xl] is a domain, the localisation K[x1, . . . , xl]S can be viewed
as a subring of K(x1, . . . , xl). As every element can be written as a quotient R(x)/Qb(x) for some
b ≥ 0, K[x1, . . . , xl]S = K(x1, . . . , xl). As the field has one prime ideal, we know that any non-zero
prime ideal contains Q(x).

This contradicts Lemma 5.0.6, thus l = 0, meaning R is a finite field extension of K.

Lemma 5.0.8. Let R ba a Jacobson ring. Suppose that R is a domain. Let b ∈ R and S =
{1, b, b2, . . . }. Suppose that RS is a field. Then R is a field.

Proof. We know by Lemma 2.1.18, there is a bijective correspondence with prime ideals of R that
don’t meet b with the prime ideals of RS . As RS is a field, we only have the (0) ideal. Hence every
non-zero prime ideal of R meets b.

Suppose for a contradiction that (0) is not the maximal ideal of R. The radical of (0) is just (0)
as R is a domain, but as R is Jacobson, (0) is the intersection of maximal ideals of R, all of which
should contain b, a contradiction. Thus (0) is a maximal ideal. R is thus a field.

Corollary 5.0.9. Let T be a field and R ⊆ T be a subring. Suppose that R is Jacobson. Suppose
also that T is finitely generated over R. Then R is a field. Consequently, T is finite over R.

Proof. Let K ⊆ T be the fraction field of R. By Weak Nullstellensatz, T is a finite extension of
K. Let t1, . . . , tk ∈ T be the generators of T as an R-algebra. Take the set of monic polynomial
over K that annihalate ti. Let b be the product of every denominator that appears as coefficients
in thesep polynomials, and set S = {1, b, b2, . . . }. Then there is a natural injective homomorphism
of R-algebras from RS into K as R is a domain, and we may view RS as a sub-R-algebra of K. By
construction T is generated by ti as an RS algebra and the elements are integral over RS . Thus T
is finite over RS . By Lemma 4.1.13, RS is a field. By 5.0.8, R is a field.

Corollary 5.0.10. Let T be a field and R ⊆ T be a subring. Suppose that R is noetherian. Suppose
also that T is finitely generated over R. Then R is a field. Again, thus, T is finite over R.

Proof. Let K ⊆ T be the fraction field of R. By Weak Nullstellensatz T is a finite extension of K.
Then K is finitely generated over R by Artin Tate. By taking the generators and multiplying the
denominators together, we can form a multiplicative set generated by a single element of R such
that K = RS . Thus R is a field by Lemma 5.0.8.

Corollary 5.0.11. Let ψ : R → T be a homomorphism of rings. Suppose that R is Jacobson
and that T is a finitely generated R algebra. Let m be a maximal ideal of T . Then ψ−1(m) is a
maximal ideal of R and the induced map R/ψ−1(m)→ T/m makes T/m into a finite field extension
of R/ψ−1(m).
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Proof. Note that T/m is a field that is finitely generated over R/ψ−1(m)

R R/ψ−1(m)

R[x1, . . . , xn] R/ψ−1(m)[x1, . . . , xn]

T T/m

qψ−1(m)

ι

ψ

qm

Quotients of Jacobson ring are Jacobson, so it follows by Corollary 5.0.9.

Theorem 5.0.12. A finitely generated algebra over a Jacobson ring is Jacobson.

Proof. Let R be a Jacobson ring and T be a finitely generated R-algebra. Let I ⊆ T be an ideal.
We want to show that the Jacobson radical of I of T coincides with the radical of I. Thus, we want
to show that the nilradical of T/I coincides with the Jacobson radical of the zero ideal in T/I. As
T/I is also finitely generated over R, we may replace T by T/I and suppose that I = 0.

Suppose that f ∈ T and that f is not nilpotent. We want to show that there exists a maximal
ideal m in T such that f /∈ m. Let S = {1, f, f2, . . . }. By non-nilpotence, the localisation is not
the zero-ring. Let q be a maximal ideal of TS . TS is a finitely generated R-algebra as T is a finitely
generated R-algebra, thus TS/q is finitely generated over R.

Let ϕ be the canonical ring homomorphism. From Corollary 5.0.11, noting that the kernel of
ϕ is just the preimage of q in R, we see that ker(ϕ) is a maximal ideal and TS/q is a finite field
extension of R/ ker(ϕ).

R R/ker(ϕ)

TS TS/q

ϕ

Considering the natural map Φ : T → TS/q, the image im(Φ) is an R-subalgebra, thus a
R/ ker(ϕ)-subalgebra of TS/q. As TS/q is integral over R/ ker(ϕ), im(Φ) is integral over R/ ker(ϕ),
by Lemma 4.1.13, is a field. Thus, ker(Φ) is a maximal ideal of T . By construction, ker(Φ) is the
inverse image of q by the natural homomorphism T → TS and f/1 /∈ q as f is a unit in TS . Thus
f /∈ ker(Φ). The proof concludes by choosing m = ker(Φ).

Remark 5.0.13. Noting that Z is Jacobson, any finitely generated algebra over Z is a Jacobson
ring.

6 Dimension

Definition 6.0.1. Let R be a ring. The dimension of R is

dim(R) = sup{n | p0 ⊋ p1 ⊋ · · · ⊋ pn, p0, . . . , pn ∈ Spec(R)}

If p is a prime ideal of R, the codimension (or height) of p is

ht(p) = sup{n | p ⊋ p1 ⊋ · · · ⊋ pn, p0, . . . , pn ∈ Spec(R)}
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Note that dimension need not be finite. Note that if q is a prime ideal and q ⊊ p, then
ht(p) > ht(q) given that ht(p) is finite. If N is the nilradical of R, then it is contained in every
prime ideal of R, thus

dim(R) = dim(R/N)

where ht(p mod N) = ht(p). Finally,

dim(R) = sup{ht(p) | p ∈ Spec(R)}

Notably, for any ideal I ⊆ R, dim(R) ≥ dim(R/I) by bijective correspondence of ideals.

Lemma 6.0.2. Let R be a ring and p ∈ Spec(R). Then ht(p) = dim(Rp). Also,

dim(R) = sup{ht(p) | p is a maximal ideal of R}

Proof. By Lemma 2.1.18, the primes in Rp are in one to one correspondence with the prime ideals
contained in p. The correspondence preserves inclusion. Thus the first case follows immediately.

For the second case, note that

dim(R) ≥ sup{ht(p) | p is a maximal ideal of R}

so we only need the reverse inequality. For this, suppose p is a prime ideal which is not maximal.
Consider a chain of prime ideals

p ⊋ p1 ⊋ · · · ⊋ pn

and let m be a maximal ideal containing p. Then we have a chain

m ⊋ p ⊋ p1 ⊋ · · · ⊋ pn

thus ht(m) ≥ ht(p), and hence follows.

Remark 6.0.3. We record a consequence of the previous lemma. If R is a ring and S is a multiplica-
tive subset of R. Let p be a prime ideal of RS and λ : R→ RS be the natural ring homomorphism.
Then ht(p) = ht(λ−1(p)) by Lemma 2.1.18.

Definition 6.0.4. Let R be a ring and I ⊆ R be an ideal. Define the codimension or height ht(I)
of I as

ht(I) = min{ht(p) | p ∈ Spec(R), p ⊇ I}

This is a generalization of the definition from prime ideals to ideals. By definition, if J is another
ideal such that J ⊆ I, then ht(J) ≤ ht(I). Also, by definition, given ht(I) < ∞, there is some
prime ideal p which is minimal among the prime ideals containing I such that ht(p) = ht(I).

Definition 6.0.5. Let k be a field and K be a field containing k. If S ⊆ K is a finite subset of K,
write k(S) for the smallest subfield of K containing k and S. By construction, this is isomorphic to
the field of fractions of the k-algebra k[S] ⊆ K. As usual, we write k(α1, . . . , αn) for k({α1, . . . , αn}).

Note the identity, k(S1 ∪ S2) = k(S1)(S2) (by definition).

Lemma 6.0.6. If the elements of a finite S are algebraic over k, then k(S) = k[S].

Proof. It suffices to show the case for one element and use the identity above for induction. We
now have a homomorphism k[t]→ K that sends t to s. As the image of this map is a domain, the
kernel is a prime ideal, and is non-zero as s is algebraic over k. As k[t] is a PID, non-zero prime
ideals are maximal. Thus, k[s] is a field.
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Also note that if all the elements of S are algebraic over k, then it is integral over k, k(S) is a
finite extension of k.

If there is a finite subset S of K such that K = k(S), we say that K is finitely generated over k
as a field. This is strictly weaker than a finitely generated k-algebra (consider k(x)), but coincides
when all the elements of S are algebraic over k.

Definition 6.0.7. Let S be subset of K. Then S is a finite transcendence basis of K over k if

• S is finite

• the elements of S are algebraically independent over k

• K is algebraic over the field k(S)

Lemma 6.0.8. If K is finitely generated over k as a field, then K has a transcendence basis over
k.

Proof. Start with a finite set S such that K = k(S). Take a subset S′ that is algebraically indepen-
dent with maximal cardinality. Then, the elements of S\S′ are algebraic over k(S′) and thus K is
algebraic over k(S′). This gives a transcendence basis over k.

Proposition 6.0.9. Let K be a field and k ⊆ K be a subfield. Suppose that K is finitely generated
over k as a field. Let S and T be two transcendence bases of K over k. Then |S| = |T |.

Proof. Write S = {γ1, . . . , γn} and T = {ρ1, . . . , ρm} such that n = |S| and m = |T |. We will show
m = n by induction on min(m,n).

In the case min(m,n) = 0, either S or T is empty, so K is algebraic over k, meaning both S
and T must be empty.

Without loss of generality, we may assume that S ∩T = ∅. To see this, suppose that S ∩T = U
and U ̸= ∅. Then, S\U and T\U are transcendence bases for K over k(U). Also,

min(|S\U |, |T\U |) = min(m,n)− |U |

Thus by induction, |S\U | = |T\U |, so |S| = |T |.
We also claim that m or n is minimal among the cardinalities of all possible transcendence

bases of K over k. To see this, suppose that without loss of generality that m ≤ n such that
m = min(m,n). Suppose that m = |T | is not minimal. Choose a transcendence basis T ′ of K
over k such that |T ′| < m that is minimal. Then, min(|T |, |T ′|) < min(m,n), thus by induction
|T ′| = |T | = m, a contradiction. Consequently, m is minimal.

Suppose without loss of generality that m is minimal among the cardinalities of all possible
transcendence bases of K over k, swapping S and T if necessary. By assumption, there is a non-
zero polynomial

P (x0, . . . , xm) ∈ k[x0, . . . , xm]

such that P (γ1, ρ1, . . . , ρm) = 0. To see this, note that γ1 is algebraic over k(ρ1, . . . , ρm) ≃
Frac(k[x1, . . . , xm]), thus there is a non-zero annihalating polynomial for γ1. We can thus make
a polynomial over k[x1, . . . , xm] that annihalates γ1. Take P to be of minimal degree with such
property.

By assumption, P (x0, . . . , xm) contains monomials with positive powers of xk for some k ≥ 1,
as else γ1 is algebraic over k. By reordering, suppose this is x1. Thus,

P (x0, . . . , xm) =
∑
j

Pj(x0, x2, . . . , xm)x
j
1
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As P contains monomials with positive powers of x1, there is some j0 > 0 such that
Pj0(x0, x2, . . . , xm) ̸= 0. Take a maximal such j0. Also, Pj0(γ1, . . . , ρ2, . . . , ρm) ̸= 0 by the minimal-
ity of the degree of P . Then, as

P (γ1, ρ1, . . . , ρm) =
∑
j

Pj(γ1, ρ2, . . . , ρm)ρ
j
1 = 0

we see that ρ1 is algebraic over k(γ1, ρ2, . . . , ρm).
Hence, k(γ1, ρ1, . . . , ρm) is algebraic over k(γ1, ρ2, . . . , ρm) and thus K is algebraic over

k(γ1, ρ2, . . . , ρm) (by using Proposition 4.1.4 and Corollary 4.1.6).
As m is minimal, γ1 is algebraically independent with ρ2, . . . , ρm, thus {γ1, ρ2, . . . , ρm} is a

transcendence basis of K. In particular, {γ2, . . . , γn} and {ρ2, . . . , ρm} are transcendence bases of
K over k(γ1). By induction, m− 1 = n− 1, so the proof follows.

Definition 6.0.10. Let k be a subfield of K and suppose that K is finitely generated over k as a
field. Following the previous Proposition, define the transcendence degree tr(K|k) of k over K
as the cardinality of any transcendence basis of K over k.

For example, tr(k(x1, . . . , xn)|k) = n for any field k.

Definition 6.0.11. A ring grading on R is the datum of a sequence R0, R1, . . . of additive sub-
groups of R such that R =

⊕
i≥0Ri and Ri ·Rj ⊆ Ri+j.

If r ∈ R, write [r]i for the projection of r to Ri and is called the i-th graded component of r.

By definition, R0 is a subring of R and for any i0,
⊕

i≥i0 Ri is an ideal of R. Each Ri naturally
carries a structure of an R0-module.

Finally, the natural map R0 → R/(
⊕

i≥1Ri) is an isomorphism of rings (as the natural map
from R → R0 has kernel

⊕
i≥1Ri). In general, there is a natural isomorphism of R0 modules

Ri0 ≃ (
⊕

i≥i0 Ri)/(
⊕

i≥i0+1Ri) for any i0 ≥ 0, by first isomorphism theorem by considering it’s
natural map.

If k is a field, then the ring k[x] has a natural grading given by (k[x])i = {a · xi | a ∈ k}. Any
ring carries a trivial grading such that R0 = R and Ri = 0 for all i ≥ 0.

Definition 6.0.12. Suppose that R is a graded ring. Suppose further that M is an R-module. A
grading on M (relative to the grading on R) is the datum of a sequence M0,M1, . . . of additive
subgroups of M such that M =

⊕
i≥0Mi and Ri ·Mj ⊆Mi+j. Then, we say that M is graded as

a R-module (but the underlying grading of R is important).

Lemma 6.0.13. Let R be a graded ring with grading Ri, (i ≥ 0). The following are equivalent

1. The ring R is noetherian

2. The ring R0 is noetherian and R is finitely generated as an R0-algebra

Proof. The implication (ii) =⇒ (i) is a consequence of the Hilbert’s basis theorem and Lemma
3.6.4.

We show the implication (i) =⇒ (ii). Note first the ring R0 is noetherian as it is a quotient of
a noetherian ring. We now want to show that R is finitely generated as an R0-algebra.

Let a1, . . . , ak be the generators of
⊕

i>0Ri viewed as an ideal of R (as R is noetherian). We
claim that the component of ai generate R as an R0-algebra, noting that each ai has finitely many
graded components.
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We proceed by induction on i ≥ 0 that Ri lies inside the R0-subalgebra generated by the graded
components of a1, . . . , ak. As R is generated by all the Ri, this proves the claim. The claim is
immediate for i = 0. Suppose that i > 0 and R0, . . . , Ri−1 all lie inside the R0-subalgebra generated
by the graded components of a1, . . . , ak.

Let r ∈ Ri. By assumption, there are elements ti, . . . , tk ∈ R such that r = t1a1 + · · ·+ tkak (as
they generate

⊕
i>0Ri). Now,

r = [r]i =
k∑
j=1

i∑
u=1

[tj ]i−u[aj ]u

Noting that [tj ]i−u ∈ R0⊕R1⊕· · ·⊕Ri−1, [tj ]i−u lies in the R0-subalgebra generated by the graded
components of a1, . . . , ak by the inducitve hypothesis. Now r lies in the R0-subalgebra also, thus
completes the proof.

Definition 6.0.14. Let R be a ring and M be an R-module. A descending filtration M• of M
is a sequence of R-submodules

M =M0 ⊇M1 ⊇M2 ⊇ · · ·

of M . If I is an ideal of R, then M• is said to be an I-filtration if IMi ⊆Mi+1 for all i ≥ 0. An
I-filtration M• is said to be stable if IMi =Mi+1 for all i larger than some fixed natural number.

Definition 6.0.15. Suppose we have a ring R and an ideal I of R, an R-module M and an I-
filtration M• on M . The directed sum of R-modules R# =

⊕
i≥0 I

i as an external sum (where
I0 = R) carries a natural structure of a graded ring, with the grading given as follows.

If α ∈ Ii and β ∈ Ij, then the product of α and β in R# is given by the product of α and β in
R, viewed as an element of Ii+j. The ring R# is often called the blow-up algebra associated with
R and I.

The directed sum M# =
⊕

i≥0Mi of R-modules carries a natural structure of graded R# module,
where if a ∈ Ii and β ∈ Mj, the multiplication is of β by α in M viewed as an element in Mi+j,
which it lies in as M• is an I-filtration.

We can view R# as an R-algebra by the natural injective map from r ∈ R to the corresponding
element of degree 0. The R-module structure on M# is given by M# viewed as a direct sum of
R-modules.

Lemma 6.0.16. Let R be a ring and I ⊆ R be an ideal. Suppose that R is noetherian. Then the
ring R# associated with R and I is also noetherian.

Proof. Let r1, . . . , rk ∈ I be generators of I (which exists as R is noetherian). There is a homo-
morphism of rings ϕ : R[x1, . . . , xk] → R# by P (x1, . . . , xk) 7→ P (r1, . . . , rk) where r1, . . . , rk are
viewed as elements of degree 1 in R# and the coefficients of the polynomial are viewed as elements
of degree 0, such that ϕ is a homomorphism of R-algebras.

By construction, ϕ is surjective, thus R# is surjective, thus finitely generated R-algebra, thus
noetherian by Hilbert basis and Lemma 3.6.4.

Lemma 6.0.17. Let R be a ring. Let I ⊆ R be an ideal. Let M• be an I-filtration on M . Suppose
that Mj is finitely generated as an R-module for all j ≥ 0. Let R# be the corresponding graded ring
and M# be the corresponding graded R# module. The following are equivalent

1. The R# module M# is fintiely generated

2. The filtration M• is stable
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Proof. Let n ≥ 0 and consider the graded subgroup

M#
(n) = (

n⊕
j=0

Mj)
⊕

(
∞⊕
k=1

IkMn)

of M# (where the left side is the n-head of M# and the right is the subgroup tails of Mn+k). Note
that each M#

(n) is a R#-submodule of M# by construction. Also, each Mj with j ∈ {0, . . . , n}
is finitely generated as an R-module by assumption, and thus M#

(n) is finitely generated as an
R#-module (generated by

⊕n
j=0Mj). We also have the inclusions

M#
(0) ⊆M

#
(1) ⊆M

#
(2) ⊆ · · ·

and M# =
⋃∞
i=0M

#
(i).

Also, saying that the I-filtration M• is stable is equivalent to saying that M#
(n0+k)

= M#
(n0)

for
all k ≥ 0 and some n0 ≥ 0. We claim this is the case if and only if M# is finitely generated as an
R# module.

If M# is finitely generated as an R#-module, then as there exists some n0 such that M#
(n0)

contains all generators, the proof follows. On the other hand, if M#
(n0+k)

=M#
(n0)

for all k ≥ 0, then

M# =M#
(n0)

, which we know is finitely generated.

Proposition 6.0.18 (Artin-Rees Lemma). Let R be a noetherian ring. Let I ⊆ R be an ideal. Let
M be a finitely generated R-module and let M• be a stable I-filtration on M . Let N ⊆ M be a
submodule. Then the filtration N ∩M• is a stable I-filtration of N .

Proof. By construction, there is a natural inclusion of R#-modules N# ⊆M#. By Lemma 6.0.17,
the R# module is finitely generated. By Lemma 3.6.6, noting R# is noetherian by Lemma 6.0.16,
submodules of finitely generated modules are finitely generated, thus N# is finitely generated. Thus
the filtration N ∩M• = N• is a stable I-filtration of N .

Corollary 6.0.19. Let R be a noetherian ring. Let I ⊆ R be an ideal and let M be a finitely
generated R-module. Let N ⊆M be a submodule. Then, there is a natural number n0 ≥ 0 such that

In(In0M ∩N) = In0+nM ∩N

for all n ≥ 0.

Proof. Apply Artin-Rees to the filtration I•M =
⊕

i≥0 I
iM of M .

Corollary 6.0.20 (Krull’s Theorem). Let R be a noetherian ring. Let I ⊆ R be an ideal and let
M be a finitely generated R-module. Then,⋂

n≥0

InM =
⋃

r∈1+I
ker([r])

where [r] :M →M is defined by m 7→ r ·m.

Proof. Let N =
⋂
n≥0 I

nM . By Corollary 6.0.19, there is a natural number n0 ≥ 0 such that

I(In0M ∩N) = IN = In0+1M ∩N = N
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By using the general form of Nakayama’s Lemma, there exists some r ∈ 1 + I such that rN = 0.
Hence N =

⋂
n≥0 I

nM ⊆
⋃
r∈1+I ker(rM ).

On the other hand, if r ∈ 1 + I, y ∈M and ry = 0, (1 + a)y = y + ay = 0 for some a ∈ I, thus
y ∈ IM . By the same logic, y ∈ I2M and so on, giving y ∈ N .

Corollary 6.0.21 (of Krull’s Theorem). Let R be a noetherian domain. Let I be a proper ideal of
R. Then

⋂
n≥0 I

n = 0.

Proof. Apply Krull’s Theorem with M = R and notice that for a nonzero r, [r] always has 0 kernel
in a domain. Clearly 0 /∈ 1 + I as I is proper.

Corollary 6.0.22 (of Krull’s Theorem). Let R be a noetherian ring and I be an ideal of R. Let M
be a finitely generated R-module. Suppose that I is contained in the Jacobson radical of R. Then⋂
n≥0 I

nM = 0.

Proof. If r ∈ 1+ I, then r is a unit. Else, r is contained in some maximal ideal m. As I is contained
in the Jacobson radical of R, it is contained in m. But now 1 is contained in m, a contradiction.
Thus ker(rM ) = 0, and the result follows by Krull’s Theorem.

The final corollary is especially useful when R is local, as then any proper ideal I is always
contained in the Jacobson radical.

Definition 6.0.23. We say that a ring is Artinian if whenever we have a descending sequence of
ideals

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

in R, then there exists an n ≥ 1 such that In+k = In for all k ≥ 0. Then, we say that the sequence
I• stabilises.

Lemma 6.0.24. Let R be a noetherian local ring with maximal ideal m. The following are equivalent

1. dim(R) = 0

2. m is the nilradical of R

3. mn = 0 for some n ≥ 1

4. R is Artinian

Proof. (i) =⇒ (ii) If dim(R) = 0, then every prime ideal of R coincides with m. Thus m is the
nilradical of R.

(ii) =⇒ (iii) Is a consequence of Lemma 3.6.7.
(iii) =⇒ (iv) Let I1 ⊇ I2 ⊇ · · · be a descending chain of ideals in R. Let k ≥ 0 be the minimal

natural number such that the sequence

mkI1 ⊇ mkI2 ⊇ · · ·

stabilises. Note that such k exists as mk = 0 for some k ≥ 0. Suppose for a contradiction that
k > 0. Let n0 ≥ 1 be such that mkIn = mkIn0 for all n ≥ n0. Consider the descending sequence

mk−1I1 ⊇ mk−1I2 ⊇ · · ·

By construction, mk−1In ⊇ mkIn0 for all n ≥ 1. Thus, we have the natural inclusions

mk−1I1/m
kIn0 ⊇ mk−1I2/m

kIn0 ⊇ · · ·
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and for n ≥ n0, m(mk−1In/m
kIn0) = 0. Thus (mk−1In/m

kIn0) has a natural structure of a R/m-
module if n ≥ n0. In particular,

mk−1In0/m
kIn0 ⊇ mk−1In0+1/m

kIn0 ⊇ · · ·

is a decreasing sequence of R/m-modules. These modules (ideals) are finitely generated as R is a
noetherian ring.

As R/m is a field, we therefore have a descreasing sequence of finite dimensional vector spaces,
which must stabilise. Let n1 ≥ n0 be such that

mk−1In/m
kIn0 = mk−1In1/m

kIn0

for all n ≥ n1. Then, mk−1In1 = mk−1In. In particular, the sequence mk−1In also stabilises. This
contradicts the minimality of k, thus k = 0.

(iv) =⇒ (i) Suppose that R is Artinian but dim(R) ̸= 0. In particular, we can find a prime
ideal p such that p ⊊ m. Then m is not the nilradical of R as it is contained in p.

As R is Artinian, we know there is a natural number n0 ≥ 0 such that mn0 =
⋂∞
i=0m

i. By
Corollary 6.0.22, this equals 0. In particular, m is the nilradical of R, a contradiction.

Theorem 6.0.25 (Krull’s principal ideal theorem). Let R be a noetherian ring. Let f ∈ R be an
element which is not a unit. Let p be minimal among the prime ideals containing f . Then ht(p) ≤ 1.

Proof. Note that the maximal ideal of Rp is minimal among the prime ideals of Rp containing
f/1 ∈ Rp (by bijective correspondence). Furthermore, the height of p is the same as the height of
the maximal ideal of Rp. As Rp is also noetherian, we may suppose that R is local and that p is a
maximal ideal.

Now let p ⊋ p1 ⊋ p2 ⊋ · · · ⊋ pk0 be a chain ideals starting with p. We wish to show that k0 ≤ 1.
We may suppose that k0 > 0 as else there is nothing to prove.

Write q = p1. By assumption, f /∈ q. Write λ : R → Rq for the natural map. For n ≥ 1, write
λ(qn) for the ideal of Rq generated by λ(qn). We know that λ(qn) consists of elements of the form
r/t where r ∈ qn and t ∈ R\q. Note also the identity λ(qn) = λ(q)

n
.

Now consider the ideal In = λ−1(λ(qn)). By construction, we have In ⊇ qn. Also, by bijective
correspondence, I1 = q. Note the difference in property is that if fr ∈ In for any r ∈ R, then r ∈ In
as λ(fr)(1/f) = λ(r) ∈ λ(qn). Consider the ring R/(f). This is local as R is local. It is a quotient
ring of a noetherian ring, so it is also noetherian. The ring R/(f) has dimension 0 as the maximal
ideal (p mod (f)) is a minimal prime ideal of R/(f) by construction. We now have a descending
sequence of ideals I1 ⊇ I2 ⊇ · · · . By Lemma 6.0.24, the image of this sequence in R/(f) must
stabilise. Thus, there is some n0 ≥ 1 such that for any n ≥ n0, In ⊆ In+1 + (f). Also, if r ∈ In,
for any t ∈ In+1 and h ∈ R such that r = t+ hf , as r − t ∈ In, and hf ∈ In so h ∈ In, shows that
In ⊆ In+1 + (f)In ⊆ In+1 + pIn. In particular, the natural map In+1/pIn+1 → In/pIn is surjective.
By Corollary 3.3.5, In+1 → In is surjective, so In+1 = In. Thus the sequence In stabilises at n0.

Now noting that In ⊇ qn and λ(In) = λ(q)n = λ(q)
n
, we have the descending sequence of ideals

of Rq

λ(q) ⊇ (λ(q))2 ⊇ (λ(q))3 ⊇ · · ·

also stabilises at n0. Now, by Corollary 6.0.22,
⋂
i≥0(λ(q))

i = 0. Thus, we have λ(q)
n0 . Now, as

λ(q) is the maximal ideal of Rq, by Lemma 6.0.24, Rq has dimension 0. In particular, ht(q) = 0.
Thus q cannot contain any prime ideal other than itself. This gives k = 1.
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Lemma 6.0.26. Let R be a noetherian ring. Let p and p′ be prime ideals of R and suppose that
p ⊊ p′. Then, there exists a prime ideal q such that p ⊆ q ⊊ p′ and q is maximal among prime ideals
with such property.

Proof. Suppose not. Let q1 be any prime that satisfies the inequality. Then, we can continuously
find larger primes from this which are strictly smaller than p. This contradicts the Noetherian
condition on R.

Corollary 6.0.27. Let R be a noetherian ring. Let f1, . . . , fk ∈ R. Let p be a prime ideal minimal
among those containing (f1, . . . , fk). Then ht(p) ≤ k.

Proof. By induction on k. The case k = 1 is Krull’s principal ideal theorem. Using a similar logic
to the start of Krull’s principal ideal theorem (by localising at p), we may suppose that R is a local
ring with maximal ideal p.

Let p ⊋ p1 ⊋ p2 ⊋ · · · be a possibly infinite chain of prime ideals beginning with p and of length
ht(p). We can also assume that there are no prime ideals between p and p1, extending the chain by
such prime ideal if necessary. Also note this condition is automatic if ht(p) <∞.

We wish to show that ht(p) ≤ k. Suppose that ht(p) > 0 as else there is nothing to prove. Let
q = p1. We claim that ht(q) ≤ k − 1.

From assumptions, there is an fi such that fi ̸= q, as else p is not the minimal prime. Up to
reordering, assume f1 ̸= p. As there are no prime ideals between p and q, we see that p is minimal
among prime ideals containing (q, f1). Hence, the ring R/(q, f1) has dimension 0. Thus, by Lemma
6.0.24, the image of all fi are nilpotent in R/(q, f1). That is, there exists bi ∈ q and ai ∈ R with
ni ≥ 2 such that

fnii = aif1 + bi

Note also that
p ⊇ (f1, f

n2
2 , . . . , fnkk ) = (f1, b2, . . . , bk)

and that p is minimal among the prime ideals containing f1, b2, . . . , bk since

r((f1, f
n2
2 , . . . , fnkk )) = r((f1, f2, . . . , fk))

by definition. Write J = (b2, . . . , bk). Note first that J ⊆ q. Since p is minimal among the
prime ideals containing f1 and J , we see that p mod J is minimal among the prime ideals of R/J
containing f1 mod J . Hence, ht(p mod J) ≤ 1 by Krull’s principal ideal theorem. On the other
hand, we have

p mod J ⊋ q mod J

In particular, ht(q mod J) = 0. Thus q is minimal among the prime ideals containing J . By the
inductive hypothesis, ht(q) ≤ k − 1. This completes the proof.

Remark 6.0.28. As any ideal is generated by finitely many elements, any prime ideal has finite
height. Thus, the dimension of a noetherian local ring is finite.

Note that this is not true if we take the local assumption away. TODO: example??
The above also implies that ht((f1, . . . , fk)) ≤ k. If we have equality, then any minimal prime

ideal associated with (f1, . . . , fk) has any height k (as height ≥ k by assumption, and ≤ k by proof).

Corollary 6.0.29. Let R be a noetherian ring. Let p0 ⊇ p1 ⊇ p2 ⊇ · · · be a descending chain of
prime ideals of R. Then there is a i0 ≥ 0 such that pi0+i = pi0 for all i ≥ 0. Moreover, if p0 is
generated by c elements, and the inequality is strict until it stabilises, then i0 ≤ c.
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Proof. Is a direct consequence of Corollary 6.0.27.

Corollary 6.0.30. Let R be a noetherian ring. Let p be a prime ideal of height c. Suppose that
0 ≤ k ≤ c and that we have elements t1, . . . , tk ∈ p such that ht((t1, . . . , tk)) = k. Then there are
elements tk+1, . . . , tc ∈ p such that ht(t1, . . . , tc) = c.

Proof. Note that by assumption, we have k ≤ c. Note we set the ideal to 0 if k = 0. Also, if
ht(t1, . . . , tc) = c, then p is a minimal prime ideal associated with the ideal (t1, . . . , tc).

If c = 0, then p is a minimal prime ideal of R, and ht((0)) = c = 0, so we are done. We proceed
by induction. Suppose that c > 0. We can also take k < c.

By induction on k, it is sufficient to construct an element t ∈ p such that ht((t1, . . . , tk, t)) = k+1.
By Corollary 6.0.27 we know the height of this is at most k, so it suffices to find a t ∈ p such that
ht((t1, . . . , tk, t)) > k.

Suppose for a contradiction such an element does not exist. Then, we have ht((t1, . . . , tk, t)) = k
for all t ∈ p. Specifically, for any t ∈ p, there is a prime ideal q that contains (t1, . . . , tk, t) and is of
height k. Now q contains a minimal prime q1 associated with (t1, . . . , tk) with height k. Note that
the height of this it at least k, giving q = q1. Thus, for all t ∈ p, t is contained in a minimal prime
ideal of height k associated with (t1, . . . , tk). Consequently, p is contained in the union of minimal
prime ideals of height k associated with (t1, . . . , tk). Thus p is contained in, thus equal to one of
these minimal prime ideals. As ht(p) = c > k, this contradicts Corollary 6.0.27.

Lemma 6.0.31. Let K be a field and let p be a non-zero prime ideal of K[x]. Then ht(p) = 1. In
particular, dim(K[x]) = 1.

Proof. Note that in K[x], non-zero prime ideals are maximal. As the zero-ideal is prime (noting
that K[x] is a domain), we must have that the dimension of any non-zero ideal is 1.

Definition 6.0.32. Let R be a ring and p is an ideal of R, we write p[x] for the ideal generated by
p in R[x]. We can note this consists of polynomials with coefficients in p. If the ideal p is prime, so
is p[x], as

R[x]/p[x] ≃ (R/p)[x]

and (R/p)[x] is a domain, noting that R/p is a domain.

Lemma 6.0.33. Let ϕ : R → T be a ring homomorphism. Let p ∈ Spec(R) and let I be the ideal
generated by ϕ(p) in T . Write ψ : R/p → T/I be the ring homomorphism induced by ϕ, and let
S = (R/p)\{0}.

Write ψS : Frac(R/p) → (T/I)ψ(S) for the induced ring homomorphism. Let ρ : T →
(T/I)ψ(T/I)ψ(S)

Then, Spec(ρ)(Spec((T/I)ψ(S))) consists precisely of the prime ideals q of T such
that ϕ−1(q) = p.

Proof. We have the following commutative diagram of rings.

T T/I (T/I)ψ(S)

R R/p Frac(R/p)

ρ

ϕ ψ ψS
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This leads to a commutative diagram of spectra,

Spec(T ) Spec(T/I) Spec((T/I)ψ(S))

Spec(R) Spec(R/p) Spec(Frac(R/p))

Spec(ϕ) Spec(ψ)

Spec(ρ)

Spec(ψS)

Thus, we wish to show that the fibre of Spec(ϕ) above p is the image of Spec(ρ) : TODO!!
WHAT????

Note first that Spec(Frac(R/p)) consists of one point as it is a field. The image of this point in
Spec(R/p) is the ideal (0) ⊆ R/p, and the preimage of this in R is p. So the image of Spec(ρ) is
contained in the fibre of Spec(ϕ) above p, noting the diagram is commutative.

Now suppose that q ∈ Spec(T ) with ϕ−1(q) = p (q lies inside the fibre of Spec(ϕ) above p). Then,
q ⊇ I, so there is an ideal q′ ∈ Spec(T/I) such that q is the image of q′ in Spec(T ). On the other
hand, we know that ψ−1(q′) is the 0 ideal, as ϕ−1(q) = p and the diagram is commutative. Thus,
q′∩ψ(S) = ∅. Consequently, by Lemma 2.1.18, q′ lies in the image of Spec((T/I)ψ(S))→ Spec(T/I).
This completes the proof.

Remark 6.0.34. Note that with the correspondence between

• prime ideals q such that ϕ−1(q) = p

• prime ideals of (T/I)ψ(S)

given above, as this is given by Spec(ρ), respects inclusion in both directions.
Applying the previous lemma with T = R[x], we have

(T/I)ψ(S) = (R[x]/p[x])ψ(S) ≃ (R/p)[x](R/p)∗ ≃ Frac(R/p)[x]

Note the A∗ = A\{0} gives the multiplicative structure, noting R/p is a domain. Note the final
equality comes from the fact

(A[x])S = (AS)[x]

given A is a domain (by considering the map
∑
aix

i/s 7→
∑

(ai/s)x
i).

Lemma 6.0.35. We keep the notation of Lemma 6.0.33. Suppose we have the chain of prime ideals

q0 ⊇ q1 ⊇ · · · ⊋ qk

in T such that ϕ−1(qi) = p for all i ∈ {0, . . . , k}. Then, k ≤ dim((T/I)ψ(S)).

Proof. By Lemma 6.0.33 and noting that the bijective correspondence respects inclusion.

Lemma 6.0.36. Let R be a ring and let N be the nilradical of R. Then the nilradical of R[x] is
N [x].

Proof. Any element of N [x] is a polynomial with nilpotent coefficients and thus is nilpotent (as the
nilradical is an ideal, closed under adding nilpotent elements). Suppose P (x) = a0+a1x+ · · ·+adxd
is an element of the nilradical of R[x]. Suppose for a contradiction that ai is not nilpotent. Let
p ∈ Spec(R) be such that ai /∈ p (exists, as ai is not nilpotent). Then P (x) mod p ∈ (R/p)[x] is a
non zero nilpotent polynomial. This is a contradiction as (R/p)[x] is a domain.

42



Lemma 6.0.37. Let R be a noetherian ring and let p1, . . . , pk be the minimal prime ideals of R.
Then the minimal prime ideals of R[x] are the ideals p1[x], . . . , pk[x]. More generally, if I is an ideal
of R and p1, . . . , pk are minimal prime ideals associated with I, then the ideals p1[x], . . . , pk[x] are
the minimal primes associated with I[x].

Proof. For the first, note that
⋂
i pi = r((0)), because the nilradical of R is decomposable by the

Lasker-Noether Theorem. Consequently, r((0))[x] = (
⋂
i pi)[x] =

⋂
i pi[x] is a minimal primary

decomposition of r((0))[x] by Proposition 3.5.2. By Lemma 6.0.36, this is the nilradical of R[x] and
correspond to the minimal primes by Theorem 3.5.14 and correspondence.

For the second statement, apply the first to pi mod I, noting that (R/I)[x] ≃ R[x]/I[x].

Lemma 6.0.38. Let R be noetherian and let I be an ideal of R. Then ht(I) = ht(I[x]).

Proof. We first prove the case if I is prime, writing I = p ∈ Spec(R). Let c = ht(p) and let
a1, . . . , ac ∈ p be such that ht((a1, . . . , ac)) = c, such that p is a minimal prime associated with
(a1, . . . , ac). This exists by Corollary 6.0.30. Let J = (a1, . . . , ac). By the previous lemma, p[x] is a
minimal prime ideal associated with J [x]. By Corollary 6.0.27, ht(p[x]) ≤ c (as a1, . . . , ac generate
J [x]). Also, if

p ⊋ p1 ⊋ p2 ⊋ · · · ⊋ pc

then,
p[x] ⊋ p1[x] ⊋ p2[x] ⊋ · · · ⊋ pc[x]

is also a descending chain of prime ideals in R[x], so ht(p[x]) ≥ c. Thus we have shown equality.
For the general case, note that there is a minimal prime p associated with I such that ht(p) =

ht(I). Thus, ht(I[x]) ≤ ht(p[x]) = ht(p) = ht(I). On the other hand, there is a minimal prime ideal
associated with I[x] such that ht(q) = ht(I[x]). By Lemma 6.0.37, we have q = (q ∩R)[x], so

ht(I[x]) = ht(q) = ht((q ∩R)[x]) = ht(q ∩R) ≥ ht(I[x] ∩R) = ht(I)

Lemma 6.0.39. Let q be a prime ideal of R[x] and let I be an ideal of R such that I ⊆ q ∩ R.
Suppose that q ∩ R is a minimal prime ideal associated with I. Let q′ ⊆ q be a prime ideal of R[x]
which is a minimal prime ideal associated with I[x]. Then q′ = (q ∩R)[x].

Proof. We have,
q′ ∩R ⊇ I[x] ∩R = I

and note with this that,
q′ ⊇ (q′ ∩R)[x] ⊇ I[x]

By minimality of q′, we have q′ = (q′ ∩R)[x]. Now, q′ ⊆ q, so

q′ = (q′ ∩R)[x] ⊆ (q ∩R)[x]

By Lemma 6.0.37, we know that (q ∩ R)[x] is a minimal prime associated with I[x], thus q′ =
(q ∩R)[x].

Proposition 6.0.40. Let R be a noetherian ring and p be a prime ideal of R[x]. Then,

ht(p) ≤ 1 + ht(p ∩R)

If p is maximal, we have
ht(p) = 1 + ht(p ∩R)
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Proof. Let δ = ht(p ∩ R) and c = ht(p). Note that since (p ∩ R)[x] ⊆ p, we have δ ≤ c by Lemma
6.0.38.

Let a1, . . . , ac ∈ p be such that ht((a1, . . . , ai)) = i for i ∈ {1, . . . , c}. This exists by Corollary
6.0.30. By the same corollary, suppose that a1, . . . , aδ ∈ p∩R. In particular, (p∩R)[x] is a minimal
prime ideal associated with (a1, . . . , aδ).

Now, inductively define a chain of prime ideals

p = q0 ⊋ q1 ⊋ · · · ⊋ qc

such that qi is a minimal prime associated with (a1, . . . , ac−i). To construct this, we first let q0 = p
and suppose that for i > 0, the ideals q0, . . . , qi−1 are given. Let qi be any minimal prime ideal
associated with (a1, . . . , ac−i), which is contained in qi−1. This is strict, as the construction gives
ht(qi) = c− i (Corollary 6.0.27).

Now, qc−δ and (p ∩ R)[x] are minimal prime ideals associated with (a1, . . . , aδ). By Lemma
6.0.39, we have equality. Thus, for all i ∈ {0, . . . , c− δ} we have

p ⊇ qi ⊇ (p ∩R)[x]

So,
p ∩R ⊇ qi ∩R ⊇ p ∩R

Giving qi ∩R = p ∩R.
By Lemma 6.0.35,

c− δ ≤ dim((R[x]/(p ∩R)[x])(R/(p∩R)∗)) = dim(Frac(R/(p ∩R))[x])

By Lemma 6.0.31, this has dimension at most 1, so the first claim has been shown.
If p is maximal, then p ̸= (p ∩ R)[x] = qc−δ as (p ∩ R)[x] is not maximal (by adding (x)), so

c− δ ≥ 1. In particular, c = δ + 1.

Theorem 6.0.41. Let R be a noetherian ring. Suppose that dim(R) < ∞. Then dim(R[x]) =
dim(R) + 1.

Proof. Let m be a maximal ideal of R[x] such that ht(m) = dim(R[x]). This exists as the dimension
is finite. By the previous proposition, we have ht(m) = 1 + ht(m ∩ R). We now claim that
ht(m ∩ R) = dim(R). Suppose for a contradiction that ht(m ∩ R) < dim(R). Then, there is a
maximal ideal p in R such that ht(p) > ht(m∩R). Let n be a maximal ideal of R[x] which contains
p[x]. By maximality, n ∩R = p, giving

ht(n) = 1 + ht(p) > 1 + ht(m ∩R) = ht(m)

which is a contradiction. Thus, ht(m) = dim(R[x]) = dim(R) + 1.

Remark 6.0.42. Let R be a noetherian ring and p ⊆ q be prime ideals of R. Then, we have

ht(p) + ht(q mod p) ≤ ht(q)

but equality does not hold in general. Rings where this holds are called catenary domains. Note
further that finitely generated algebras over fields are catenary. So equality holds if R is a domain,
as they are always finitely generated over some field. (Both results not shown here)

We note that however ht((m ∩R)[x]) + ht(m/(m ∩R)[x]) = ht(m).
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Corollary 6.0.43. Let R be a noetherian ring. Suppose that dim(R) < ∞. Then we have that
dim(R[x1, . . . , xt]) = dim(R) + t.

Proof. This follows from Theorem 6.0.41 and Hilbert’s basis theorem.

Lemma 6.0.44. Let R be a subring of T . Let T be integral over R. Let q1, q2 be prime ideals of T
such that q1 ∩R = q2 ∩R = p for some prime p in R. If q1 ⊆ q2, q1 = q2.

Proof. The ring R/p can be viewed as a subring of T/q1 (by considering the map from R into T/q1
induced by the quotient map). By assumption, we also have (q2 mod q1)∩R/p = (0). Without loss
of generality, we may therefore view R and T to be domains and q1 and p are zero ideals.

Take e ∈ q2\{0} and let P (x) ∈ R[x] be a non-zero monic polynomial such that P (e) = 0. As
T is a domain, the constant coefficient of P (x) is non-zero. But the constant term P (0) is a linear
combination of positive powers of e, so P (0) ∈ R ∩ q2 = (0), a contradiction.

Lemma 6.0.45. Let R be a subring of T . Suppose that T is integral over R. Then dim(T ) =
dim(R). This holds if R or T has infinite dimension (then the other has infinite dimension).

Proof. Suppose first that dim(R),dim(T ) <∞. Let

p0 ⊋ p1 ⊋ · · · ⊋ pdim(R)

be a descending chain of prime ideals in R of maximal length. By Theorem 4.1.15, we can find a
prime ideal qi in T such that qi ∩R = pi and

q0 ⊋ q1 ⊋ · · · ⊋ qdim(R)

Hence dim(T ) ≥ dim(R). We have

q0 ∩R ⊋ q1 ∩R ⊋ · · · ⊋ qdim(T ) ∩R

by Lemma 6.0.44. Thus dim(T ) ≤ dim(R). The proof uses adjacent logic for the infinite case.

Corollary 6.0.46. Let k be a field and let R be a finitely generated k-algebra. Suppose that R is a
domain and let K = Frac(R). Then dim(R) and tr(K|k) are both finite and equal.

Proof. By Noether’s Normalization Lemma, there is an injection of rings k[x1, . . . , xd] ↪→ R which
makes R into an integral k[x1, . . . , xd]-algebra. From the previous lemma, we have dim(R) =
dim(k[x1, . . . , xd]) = d. Also, the fraction field k(x1, . . . , xd) = Frac(k[x1, . . . , xd]) is naturally
a subfield of K, and as every element of R is integral over k[x1, . . . , xd], every element of K is
algebraic over k(x1, . . . , xd). Thus,

tr(K|k) = tr(k(x1, . . . , xd)|k) = d = dim(R)

7 Other

TODO: orbit stabiliser, structure theorem for finitely generated abelian groups

Lemma 7.0.1. A finite commutative group G is cyclic if and only if for any d|#G, there is at most
one subgroup in G with cardinality #G.
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Proof. In the infinite case, we use the fact G ≃ Z.

Lemma 7.0.2. Let G be a finite cyclic group. Let k := #G. Define I : (Z/kZ)∗ → AutGroups(G)
by a 7→ (γ 7→ γa). Then I is an isomorphism.

Proof. Note first that this is well defined as γk = e for any γ ∈ G. Also,

I([a][b])(γ) = γab = I([a])(γb) = (I([a]) ◦ I([b]))(γ)

thus is a homomorphism.
Take any ψ ∈ AutGroups(G). If g is the generator for G, ψ(g) = ga must also be a generator,

with gcd(a, k) = 1. In particular, I([a]) = ψ, thus I is surjective.
Suppose I([a]) is the identity automorphism. In particular, ga = g for a generator g. As G is

cyclic, this forces a = 1 mod k. In particular, [a] = [1].

Definition 7.0.3. A group G is simple if it has no nontrivial normal subgroups.

Definition 7.0.4. A subgroup G of Sn is called transitive if it has only one orbit in {1, . . . , n}.

7.1 Solvable Group

Definition 7.1.1. Let G be a group. A finite filtration of G is a finite ascending sequence G• of
subgroups

0 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

such that Gi is normal in Gi+1 for all i ∈ {0, . . . , n− 1}.
The number n is called the length of the finite filtration. The finite filtration G• is said to have

no redundacies if Gi ̸= Gi+1 for all i ∈ {0, . . . , n − 1}. It is said to have abelian quotients if
the quotient group Gi+1/Gi is an abelian group for all i ∈ {0, . . . , n− 1}.

The finite filtration G• is trivial if n = 1.

Note that the trivial filtration always exists and is unique.

Definition 7.1.2. A group is solvable if there exists a finite filtration with abelian quotients on G.

Lemma 7.1.3 (Solvability via restriction and quotient). Let G be a group and let H be a subgroup.
Then H is solvable. If H is normal in G, then the quotient group G/H is also solvable.

Proof. Let G• be a finite filtration with abelian quotients on G. Let n be the length of this
filtration. We first claim that H ∩Gi is normal in H ∩Gi+1. In particular, for any h ∈ H ∩Gi+1,
the automorphism γ 7→ h−1γh of Gi+1 sends H into H and Gi into Gi, thus sends H ∩ Gi into
H ∩Gi. In particular,

0 = G0 ∩H ⊆ G1 ∩H ⊆ · · · ⊆ Gn ∩H = H

is a finite filtration of H. Furthermore, we have an injective map of groups

ϕ : Gi+1 ∩H/Gi ∩H ↪→ Gi+1/Gi

given by [γ]Gi∩H 7→ [γ]Gi . Thus this gives a finite filtration with abelian quotients for H. In
particular, H is solvable.

Suppose now that H is normal. Consider the ascending sequence of subgroups

0 = [G0]H ⊆ [G1]H ⊆ · · · ⊆ [Gn]H = G/H
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of G/H. Using the fact [•]H : G→ G/H is a morphism of groups, taking γ ∈ Gi+1 and τ ∈ Gi, we
have

[γ]−1
H [τ ]H [γ]H = [γ−1τγ]H

we have [γ]−1
H [τ ]H [γ]H ∈ [Gi]H , as γ−1τγ ∈ Gi. In particular, [G•]H is a finite filtration of G/H.

Also, we have a surjection of groups

µ : Gi+1/Gi → [Gi+1]H/[Gi]H

such that for any γ ∈ Gi+1, we have

µ([γ]Gi) = [[γ]H ][Gi]H

Noting that we are mapping surjectively from a abelian group, the target is also abelian. In partic-
ular [G•]H is a finite filtration with abelian quotients for G/H.

Lemma 7.1.4 (Solvability via inflation). Let G be a group and H ⊆ G be a normal subgroup. If H
is solvable and G/H is solvable, then G is solvable.

Proof. As H is solvable, we have a finite filtration

0 = H0 ⊆ · · · ⊆ Hn = H

with abelian quotients. Similarly, we G/H is solvable, we have a finite filtration of abelian quotients

0 = [G0]H ⊆ · · · ⊆ [Gm]H = G/H

Let ϕ : G→ G/H be the standard quotient map. Consider,

H = ϕ−1([G0]H) ⊆ · · · ⊆ ϕ−1([Gm]H) = G

For i ∈ {0, . . . ,m− 1}, ϕ−1([Gi]H) is normal in ϕ−1([Gi+1]H). By the third isomorphism theorem,
we have

ϕ−1([Gi]H)/ϕ
−1([Gi+1]H) ≃ [Gi]H/[Gi+1]H

Thus by gluing the two finite filtrations,

0 = H0 ⊆ · · · ⊆ Hn = H = ϕ−1([G0]H) ⊆ · · · ⊆ ϕ−1([Gm]H) = G

gives a finite filtration of abelian quotients in G.

Proposition 7.1.5. Let G be a finite group and let p be a prime number. Suppose there is an n ≥ 0
such that #G = pn. Then G is solvable.

Such groups are called p-groups.

Proof. We proceed by induction on n. For n = 0, the proposition clearly holds.
Let ϕ : G → AutGroups(G) be the map of groups such that ϕ(g)(h) = ghg−1. This gives an

action of G on G via conjugation. By the orbit stabiliser theorem, and Lagrange’s theorem, the
orbits of G in G all have a cardinality a power of p. The orbit of the unit element of G is {1G},
and as the orbits partition G, we have g0 ∈ G with g0 ̸= 1G such that g0 is a fixed point of the
action of G on G. Now, g0g = (gg0g

−1)g = gg0, so g?0 commutes with every element of G. In
particular, g0 ∈ Z(G) is nontrivial. By definition, Z(G) is abelian thus solvable, and G/Z(G) has
cardinality pk for k < n, and thus solvable by the inductive hypothesis. Thus, by Lemma 7.1.4, G
is solvable.
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Definition 7.1.6. The length of a finite group length(G) is

sup{n ∈ N | n is the length of a finite filtration with no redundacies of G}

This is well-defined as the length of a finite group is finite, as it cannot be larger than #G.

Lemma 7.1.7. Suppose that G is a finite solvable group and let G• is a finite filtration with no
redundacies of length length(G) on G. Then for all i ∈ {0, . . . , length(G) − 1}, the group Gi+1/Gi
is a cyclic group of prime order.

Proof. Let n := length(G). Suppose there exists an i0 such that Gi0+1/Gi0 is not cyclic of prime
order. Then, noting Gi0+1/Gi0 is solvable, if it is not abelian, it has some nontrivial proper normal
subgroup. If it is abelian but not of prime order, by the structure theorem for finitely generated
abelian groups, Gi0+1/Gi0 is isomorphic to a finite direct sum of cyclic groups each with order a
power of a prime number, giving us a nontrivial subgroup.

Call such a subgroup H. Let q : Gi0+1 → Gi0+1/Gi0 be the quotient map. Consider the
ascending sequence of subgroups

0 = G0 ⊆ G1 ⊆ · · · ⊆ Gi0 ⊆ q−1(H) ⊆ Gi0+1 ⊆ · · · ⊆ Gn = G

There are no redundacies as H is nontrivial and proper. Note first that Gi0 ◁ q−1(H) is immediate.
We have q−1(H) ◁ Gi0+1 as it is the kernel of the map

Gi0+1 → Gi0+1/Gi0 → (Gi0+1/Gi0)/H

This gives a longer filtration, contradicting the maximality of n, and in particular every quotient
has prime order.

Remark 7.1.8. If G is a finite group and G# is a finite filtration with no redundacies, then we can
prove similarly that for the longest sequence, Gi+1/Gi is a nonzero simple group (intuitively, if we
can pick a nontrivial normal subgroup, we can always extend the sequence).

Example 7.1.9. We note the following facts.

• Abelian groups are solvable (trivially)

• S3 is solvable. The ascending sequence 0 ⊆ A3 ⊆ S3 is a finite filtration of S3, with quotients
A3/0 ≃ Z/3Z and S3/A3 ≃ Z/2Z.

• The group S4 is also solvable (0 ⊆ V4 ⊆ A4 ⊆ S4).

• A5 is not solvable, as it is simple but non-abelian. Consequently, any group which contains A5

as a subgroup is not solvable. In particular, Sn for n ≥ 5 is not solvable (as A5 ≤ S5 ≤ Sn).

48



8 Properties about Commutative Rings

Definition 8.0.1. For any ring R, there is a unique ring map (homomorphism) ϕ : Z → R such
that

ϕ(n) =
n times

1 + · · ·+ 1

Define the characteristic written char(R) to be the unique r ≥ 0 such that (r) = ker(ϕ)

Note that if R is a domain, then char(R) is either 0 or a prime number.

8.1 Fields

Proposition 8.1.1. Let R be a domain. Then there is a field F and an injective ring map ϕ : R→ F
such that if

ϕ : R→ F1

is a ring map into a field F1, then there is a unique ring map λ : F → F1 such that ϕ1 = λ ◦ ϕ.

Proof. TODO!!

Definition 8.1.2. As a consequence of the above proposition, F is determined uniquely up to iso-
morphism. We call F the field of fractions, and write Frac(F ).

Note that Frac(R) = RR\{0}

Lemma 8.1.3. Let K be a field and I ⊆ K be an ideal. Then I = (0) or I = K.

Proof. Immediate (any non-zero element has an inverse, thus generates K).

Lemma 8.1.4. Let K,L be fields and ϕ : K → L be a ring map. Then ϕ is injective.

Proof. Consider the kernel of ϕ. This is an ideal, thus is either (0) or K. In the former ϕ is injective
(by the First Isomorphism Theorem), in the latter K and L are both zero-rings, so it follows.

8.2 Polynomial Rings

Definition 8.2.1. Let R be a ring. Write R[x] to be the ring of polynomials in the variable x and
coefficients in R (with standard operations). If r ≥ 0 is an integer, K[x1, . . . , xr] := K if r = 0 and

K[x1, . . . , xr] := K[x1][x2] . . . [xr]

Given P (x) = adx
d+· · ·+a1x+a0 ∈ R[x] with ad ̸= 0, P (x) is monic if ad = 1 (and deg(0) = −∞).

We define the degree of P (x) written deg(P ) := d.
An element t ∈ R is a root of P (x) if P (t) = 0.

Lemma 8.2.2. If R is a domain, then R[x] is also a domain.

Proof. TODO!!!

Proposition 8.2.3. If K is a field, K[x] is a euclidian domain.

Proof. TODO!!

Consequently, K[x] is a PID.
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Definition 8.2.4. A unique factorization domain (UFD) is a domain R such that for any
r ∈ R\{0}, there is a sequence r1, . . . , rk ∈ R such that

1. ri is irreducible for all i

2. (r) = (r1 · · · rk)

3. if r′1, . . . , r
′
k′ is another such sequence with the above properties, k = k′ and there is a permu-

tation σ ∈ Sn such that (ri) = (r′σ(i)) for all i ∈ {1, . . . , k}

Proposition 8.2.5. Any PID is a UFD.

Definition 8.2.6. Write gcd(P1, . . . , Pk) for the unique monic generator of the ideal
(P1(x), . . . , Pk(x)).

Lemma 8.2.7. Suppose that R is a UFD. An element f ∈ R\{0} is irreducible if and only if (f)
is a prime ideal.

Proof. The forward direction is immediate, noting that if f |p1p2, f |p1 or f |p2, from the fact that f
is irreducible and p1, p2 can be split into irreducible components.

On the other hand, if (f) is a prime ideal and f is not irreducible, then f = f1f2 for some
non-units. But as f is prime, f |f1 or f |f2. Without loss of generality, taking f |f1, we have f1f2|f1,
meaning f2 is a unit, a contradiction.

Lemma 8.2.8. Let R be a PID. Let I ◁ R be a nonzero prime ideal. Then I is a maximal ideal.

Proof. Suppose not. Then we can find an element r ∈ R such that r /∈ I and ([r]I) is not R/I.
Also, ([r]I) = [(r, I)]I , and (r, I) ̸= R and I ⊊ (r, I). As we are in a PID, we can find g, h ∈ R such
that (g) = (r, I) and (h) = I. Then, g|h but h ̸ |g (thus h is reducible). But h is irreducible as I is
prime and R is a UFD, a contradiction.

Proposition 8.2.9. Let K be a field and f ∈ K[x], a ∈ K. Then,

1. a is a root of f if and only if (x− a)|f

2. there is a polynomial g ∈ K[x] with no roots and a decomposition

f(x) = g(x)

k∏
i=1

(x− ai)mi

where k ≥ 0 and mi ≥ 1 and ai ∈ K.

Proof. Immediate. For the forward case in (i), we use euclidian division on (x − a) and show the
remainder is 0.

Proposition 8.2.10 (Eisenstein Criterion). Let

f = xd +
d−1∑
i=1

aix
k ∈ Z[x]

Let p > 0 be a prime number. Suppose p|ai and p2 ̸ |a0. Then f is irreducible in Z[x].

50



Proof. Sketch. The idea is that viewing this polynomial in Fp[x] gives xd, and we show that if this
is reducible, they are xn and xd−n in the same field. This contradicts with the assumption p|a0.
(Need some algebraic manipulation to show the first statement)

Lemma 8.2.11. Let f ∈ Z[x] be monic. Let p > 0 and f (mod p) ∈ Fp[x] is irreducible. Then f is
irreducible in Z[x].

Proof. TODO!!!

Lemma 8.2.12 (Gauss Lemma). Let f ∈ Z[x]. Then f is irreducible in Z[x] if and only if it is
irreducible in Q[x].

Proof. TODO!!

8.3 Action of Groups on Rings

Definition 8.3.1. Let S be a set and G be a group. Write AutSets(S) for the group of bijective
maps a : S → S (where the group operator works by composition). An action of G on S is a group
homomorphism

ϕ : G→ AutSets(S)

Notation 8.3.2. Given γ ∈ G and s ∈ S, we write

γ(s) := ϕ(γ)(s)

or γs for γ(s).

Definition 8.3.3. The set of invariants of S under the action of G is written

SG := {s ∈ S | γ(s) = s ∀γ ∈ G}

If s ∈ S,
Orb(G, s) := {γ(s) | γ ∈ G}

is the orbit of s under G, and

Stab(G, s) := {γ ∈ G | γ(s) = s}

is the stabiliser of s. We omit G when it is clear.

Definition 8.3.4. The action of G on a ring R is compatible with the ring structure of R, or G
acts on a ring R if the image of ϕ lies in the subgroup

AutRings(R) ⊆ AutSets(R)

where AutRings(R) is the group of bijective maps R→ R which respects the ring structure.

Intuitively, each group element is mapped to a endomorphism which has some structure.

Lemma 8.3.5. Let G act on a ring R.

1. RG is a subring of R.

2. If R is a field, RG is a field.
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Proof. The first case is immediate by noting γ(ab) = γ(a)γ(b) = ab and γ(a+b) = γ(a)+γ(b) = a+b.
The second follows from the fact that 1 = γ(aa−1) = γ(a)γ(a−1) = aγ(a−1).

Definition 8.3.6. Let R be a ring and n ≥ 1. There is a natural action of Sn on the ring
R[x1, . . . , xn] by

σ(P (x1, . . . , xn)) = P (xσ(1), . . . , xσ(n))

Define a symmetric polynomial with coefficients in R to be an element in R[x1, . . . , xn]
Sn.

Example 8.3.7. For any k ∈ {1, . . . , n}, the polynomial

sk :=
∑

i1<i2<···<ik

k∏
j=1

xij ∈ Z[x1, . . . , xn]

is symmetric. We call this the k-th elementary symmetric function (in n variables), and this satisfies

(x− α1)(x− α2) · · · (x− αd) = xd − s1(α1, . . . , αd)x
d−1 + · · ·+ (−1)dsd(α1, . . . , αd)

Theorem 8.3.8 (Fundamental Theorem of the Theory of Symmetric Functions). Let ϕ :
R[x1, . . . , xn] → R[x1, . . . , xn] be the map of rings which sends xk to sk and constants to them-
selves. Then,

1. R[x1, . . . , xn]Sn is the image of ϕ

2. ϕ is injective

Then, by the first isomorphism theorem, we have R[x1, . . . , xn]Sn = R[s1, . . . , sn].

Proof. For the first case, we show that every symmetric polynomial can be expressed as a polynomial
in si. Define lexicographic ordering on monomials

xα1
1 · · ·x

αn
n ≤ x

β1
1 · · ·x

βn
n

By α1 < β1 or α1 = β1 and xα2
2 · · ·xαnn ≤ xβ22 · · ·x

βn
n . Fix any symmetric polynomial f . Let

xα1
1 · · ·xαnn be the largest monomial in f . We need α1 ≥ · · · ≥ αn, as any permutation of the powers

must also be in f . Also, the largest monomial in sα1−α2
1 sα2−α3

2 · · · sαnn is also xα1
1 · · ·xαnn . Thus,

there exists a c ∈ R such that all monomials in f − c · sα1−α2
1 sα2−α3

2 · · · sαnn are strictly smaller than
xα1
1 · · ·xαnn . By repeating, we can write f as a polynomial in si.

To show (ii), we can show that si are algebraicly independent, and therefore that the kernel is
0. TODO!!!

Definition 8.3.9. Define,

1. ∆(x1, . . . , xn) :=
∏
i<j(xi − xj)2 ∈ Z[x1, . . . , xn]Sn

2. δ(x1, . . . , xn) :=
∏
i<j(xi − xj) ∈ Z[x1, . . . , xn]An

3. If σ ∈ Sn, δ(xσ(1), . . . , xσ(n)) = sign(σ) · δ(x1, . . . , xn).

where sign : Sn → {−1, 1} gives the sign of the permutation, and An := ker(sign) is called the
alternating group. We call ∆(x1, . . . , xn) the discriminant.

Note the third point follows from the fact that any permutation can be written as a product of
transpositions, and sign(σ) = −1 if σ is a transposition. The ∈ in the second point follows from
this.
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9 Field Extensions

9.1 Field extension

Definition 9.1.1. Let K be a field. A field extension of K, or K-extension is an injection

K ↪→M

of fields. This injection gives M the structure of a K-vector space. We write M |K for the field
extension of K to M .

A map from the K extension M |K to M ′|K is a ring map M →M ′ that is compatible with the
injections K ↪→M and K ↪→M ′. Alternatively, it is a map that makes the following commute.

K

M M ′

Given M |K is a field extension, we write AutK(M) for the group of bijective maps of K-
extensions from M to M , where the group law is the composition of maps. This is the subgroup
of AutRings(M) which are compatible with the K-extension structure of M . We say that the field
extension is finite if dimK(M) <∞.

If M is a finite extension of K, then by rank nullity, any ring map from M to M is a bijection.

Example 9.1.2. If M is not a finite extension of K, then endomorphisms on M need not be
bijective. Consider ϕ : Q(t) → Q(t) which sends t 7→ t2. Consequently, dimM (M) need not be 1,
depending on the structure of the extension.

Proposition 9.1.3 (Tower Law). If L|M and M |K are finite field extensions, we have

[M : K] · [L :M ] = [L : K]

Specificaly, if m1, . . . ,ms is a basis of M as a K-vector space and l1, . . . , lt is a basis of L as a M
vector space, (as vector spaces induced by the field extensions), then {milj} is a basis for L as a
K-vector space (as the composition of extensions).

Proof. TODO!!!

Definition 9.1.4. Let M |K be a field extension and a ∈M . Define

Ann(a) := {P (x) ∈ K[x] | P (a) = 0}

We have Ann(a) ⊆ K[x] is an ideal.
We say that a is transcendental over K if Ann(a) = (0) and algebraic if Ann(a) ̸= (0). If a is

algebraic over K, then the minimal polynomial ma is the unique monic polynomial that generates
Ann(a).

Alternatively the annihalator is the kernel of the map from K[x] to L.

K

K[x] M

ϕ

ea
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Consequently, there is a injection K[x]/Ann(a) ↪→ M where M is a domain. Thus, Ann(a) is
prime. If a is algebraic over K, ma is irreducible (as (ma) is a prime ideal in a UFD). Thus a monic
irreducible polynomial that annihalates a is the minimal polynomial. Prime ideals in a PID are
maximal, so Ann(a) is maximal.

Definition 9.1.5. We say that a field extension M |K is algebraic if for all m ∈ M , the element
m is algebraic over K. Else, we say that the field extension is transcendental.

Lemma 9.1.6. If M |K is finite, then M |K is algebraic.

Proof. Let m ∈ M . If m is transcendental over K, there is an injection of a K-vector space
K[x] ↪→ M . K[x] is infinite dimensional, but this contradicts the fact M is a finite-dimensional
vector space over K.

9.2 Separability

Let K be a field. Let P (x) ∈ K[x], and suppose

P (x) = adx
d + ad−1x

d−1 + · · ·+ a0

Define P ′(x) = d
dxP (x) := dadx

d−1 + (d − 1)ad−1x
d−2 + · · · + a1, where d − i is 1K + · · · + 1K

(d− i)-times. This is a K-linear map from K[x] to K[x] and satisfies

d

dx
(P (x)Q(x)) =

d

dx
(P (x))Q(x) + P (x)

d

dx
(Q(x))

Definition 9.2.1. P (x) has multiple roots if (P (x), P ′(x)) = (1). Equivalently, we have that
gcd(P (x), P ′(x)) = 1 (by Bézout’s Lemma).

Given
P (x) = (x− ρ1)(x− ρ2) · · · (x− ρd)

we see that P (x) has multiple roots if and only if there are i ̸= j such that ρi = ρj .

Lemma 9.2.2. Let L|K be a field extension, P (x), Q(x) ∈ K[x]. Write gcdL(P (x), Q(x)) for the
greatest common divisor of P (x) and Q(x) viewed as polynomials with coefficients in L. Then,

gcd(P (x), Q(x)) = gcdL(P (x), Q(x))

Proof. We use the fact that a generator of (P (x), Q(x)) can be computed using Euclidian division.
We note that the sequence in which we get this by euclidian algorithm is unique and is invariant of
the field.

In particular, the definition of multiple roots captures roots that may not yet be in the base
field.

Remark 9.2.3. Let K be a field and P (x) ∈ K[x]. Let L|K be a field extension. Then, P (x)
has multiple roots as a polynomial with coefficients in K if and only if it has multiple roots as a
polynomial with coefficients in L.

Lemma 9.2.4. Let P (x), Q(x) ∈ K[x] and suppose Q(x)|P (x). If P (x) has no multiple roots, Q(x)
also has no multiple roots.
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Proof. Let T (x) ∈ K[x] be such that Q(x)T (x) = P (x). By the Leibniz rule,

(P, P ′) = (QT,Q′T +QT ′)

If Q and Q′ were both divisible by some polynomialW with positive degree, it also divides Q′T+QT ′

and QT , thus 1 would be divisible by W , a contradiction.

Lemma 9.2.5. Suppose that K is a field and that P (x) ∈ K[x]\{0}. Suppose that char(K) does
not divide deg(P ) and that P (x) is irreducible. Then (P, P ′) = (1).

Proof. Let
P (x) = adx

d + ad−1x
d−1 + · · ·+ a0

where ad ̸= 0. First note that d = 0K in K as char(K) does not divide d. Thus, P ′(x) ̸= 0. As P is
irreducible, any common divisor of P and P ′ is a non-zero constant or P times a non zero constant.
It is not the latter as deg(P ′) < deg(P ). Thus, it must be a non-zero constant. In other words,
(P, P ′) = (1).

Noting the proof, if P ′ ̸= 0, and P is irreducible, the same result follows.

Definition 9.2.6. Let K be a field. We say that P (x) ∈ K[x]\{0} is separable if all the irreducible
factors of P (x) have no multiple roots.

Note that by Remark 9.2.3 and Lemma 9.2.4, this notion is invariant under field extensions.
Also, by Lemma 9.2.5, irreducible polynomials with coefficients in K whose degree is prime to
the characteristic of K is separable. Specificaly, if char(K) = 0, any irreducible polynomial with
coefficients in K is separable.

Definition 9.2.7. Let L|K be an algebraic field extension. We say that L|K is separable if the
minimal polynomial over K of any element of L is separable.

Noting the previous paragraph, if K is a field and char(K) = 0, all algebraic extensions of K
are separable (noting that minimal polynomials are irreducible in K[x]).

Lemma 9.2.8. Let M |L and L|K be algebraic field extensions. Suppose M |K is separable. Then,
M |L and L|K are both separable.

Proof. By definition, L|K is separable. Let m ∈M and let P (x) ∈ K[x] be the minimal polynomial
over K. Let Q(x) be the minimal polynomial of m over L. By assumption, Q(x)|P (x). By
assumption, P (x) has no multiple roots over K thus also over L by Remark 9.2.3. By Lemma 9.2.4,
Q(x) also has no multiple roots over L, thus is separable.

Lemma 9.2.9 (MOVE LATER). Let M |L and L|K be finite separale extensions. Then M |K is
separable.

Proof. Consider the following commutative diagram of extensions:

L′ M ′

K L M

where L′ is the normal closure of L over K such that L′|K is Galois, and M ′ is the smallest field
containing M and L′. Then note that L′|K is separable (as it is Galois), and by using the fact that
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L′|L is separable, M ′|L is also separable. Thus, M ′|L′ is separable. Thus, we may reduce to the
case where L′|K is a Galois extension and take L := L′, M :=M ′.

Let α ∈ M be a root of an irreducible polynomial f ∈ L[t]. By assumption, this is separable.
Now let G := Gal(L|K). For each σ ∈ G, we have

fσ(t) = σ(f(t)) =
∑
i

σ(ai)t
i

This is also irreducible and separable. Taking

g(t) =
∏
σ∈G

fσ(t)

we see that g ∈ K[t] and is also separable as each fσ is separable. Any minimum polynomial of α
in K divides g, so in particular is separable. Thus M |K is separable.

Example 9.2.10. Finite extensions need not be separable. Noting the proof in Lemma 9.2.5, we
at least want to find a polynomial P such that P ′ = 0.

Consider K := F2(t) where F2 = Z/2Z. Let P (x) := x2 − t. As P (x) is of degree 2 and has no
roots in K (by considering degrees), it is irreducible.

Define L := K[x]/(P (x)). As P (x) is irreducible, (P (x)) is prime, thus maximal in K[x],
meaning L is a field. However, P ′(x) = 0, thus (P ′, P ) = (P ) ̸= (1). As P (x) is the minimal
polynomial of x ∈ L, L|K is not separable.

Example 9.2.11. Let p be a prime and take f ∈ Fp(t). Write

f(t) =
n∑
i=0

ait
i

where ai ∈ Fp. Then, D(f)(t) =
∑n

i=1 iait
i−1 By characteristic, this vanishes if and only if p|iai for

all i, which is equivalent to ai = 0 whenever p ̸ |i. Hence the only possible nonzero terms in f are
those with exponent a multiple of p, so

f(t) =
∑
j

apjt
pj =

∑
j

apj(t
p)j = g(tp)

Suppose now that the map x 7→ xp is bijective (such fields are called perfect). Then, writing
f(t) = g(tp), we can take g(tp) =

∑m
j=0 bjt

pj and picking j such that cpj = bj , we have

g(tp) =
∑
j

(cj)
pupj =

∑
j

cju
j

p

= h(u)p

where h(u) =
∑

j cju
j . In particular, f(t) = h(t)p. But then f is not irreducible. Thus, if f is

irreducible and Fp is perfect, D(f) ̸= 0, meaning f is separable.

9.3 Simple Extensions

Definition 9.3.1. Let ι : K ↪→M be a field extension and S ⊆M be a subset. Define

K(S) :=
⋂

field L,L⊆M,L⊇S,L⊇ι(K)

L
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This is a subfield of M and is called the field generated by S over K, and the elements of S
are called generators of K(S). The field extensions M |K is the composition of the natural field
extensions K(S)|K and M |K(S).

Note also that if S = {s1, . . . , sk}, then

K(S) = K(s1) . . . (sk)

We also say that M |K is a simple extension if there is a m ∈M such that M = K(m).

Example 9.3.2. Some examples of simple extensions:

• Let K = Q and M = Q(i,
√

(2)) be a field generated by i and
√
2 in C. Then M is a simple

algebraic extension of K generated by i+
√
2.

• Let M = Q(x) = Frac(Q[x]) and let K = Q. Then M is a simple transcendental extension of
K, generated by x.

Proposition 9.3.3. Let M = K(α)|K be a simple algebraic extension. Let P (x) be the minimal
polynomial of α over K. Then, there is a natural isomorphism of K-extensions

K[x]/(P (x)) ≃M

which sends x to α.

Proof. We first note that there is a natural map fromK[x]/(P (x)) toM by evaluation. As P (x) ̸= 0,
we have (P (x)) is a maximal ideal. Thus, the image of K[x]/(P (x)) in M is a field. By definition,
this is the entirety of M .

Remark 9.3.4. Noting the above proposition, we can note that [M : K] = deg(P ). Then, the set
{1, x, . . . , xdeg(P )−1} is a basis. Also as a consequence, a finitely generated algebraic extension is a
finite extension.

Corollary 9.3.5. Let M = K(α)|K be a simple algebraic extension. Let K ↪→ L be an extension
of fields. Let P (x) be the minimal polynomial of α over K. There is a bijective correspondence with
the roots of P (x) in L and the maps of K-extensions M ↪→ L.

Proof. The corresponding map is given by the unique map extended from sending α to the root of
P (x) in L.

Example 9.3.6. Let M := Q(i) ⊆ C and let K = Q, and L = Q(
√
2) ⊆ C. There is no map of

K-extensions M ↪→ L because the roots of x2 + 1 do not lie in L ⊆ R. If we change L = C, then
there are two maps of K-extensions M ↪→ L corresponding to the function extended by sending
i 7→ i and i 7→ −i.

9.4 Splitting Fields

Definition 9.4.1. Let K be a field. Let P (x) ∈ K[x]. We say that P (x) splits in K if for some
c ∈ K and sequence of {ai ∈ K}, we have

P (x) = c ·
k∏
i=1

(x− ai)

We call a field algebraicly closed if any polynomial with coefficients with L splits in L.
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If P (x) ∈ K[x] is irreducible and deg(P ) > 1, P (x) has no roots in K and thus does not split
in K.

Definition 9.4.2. A field extension M |K is a splitting extension for P (x) ∈ K[x] if

1. P (x) splits in M

2. M is generated over K by the roots of P (x) in M .

Theorem 9.4.3. Let P (x) ∈ K[x]. Then,

• There exists a field extension M |K which is a splitting extension for P (x)

• If L|K is a splitting extension for P (x), then L and M are isomorphic as K-extensions

• Let L|K be a splitting extension for P (x) and J |K be any K-extension. Then, the images of
all the maps of K-extensions L ↪→ J coincide.

Proof. (i) We work by induction on deg(P ). If deg(P ) = 1, then K|K is a splitting extension
for P (x). Suppose that deg(P ) > 1. Let P1 be an irreducible factor of P (x). Consider M1 :=
K[x]/(P1(x)). M1 is a field, and there is a natural map of rings K ↪→M1.

By definition, P (x) has a root a in M1 (which is just x in the presentation M1 = K[x]/(P1(x))).
LetM be a splitting field for P (x)/(x−a) ∈M1[x] overM1, which exists by the inductive hypothesis.
By construction, P (x) splits in M . Let a2, . . . , ak be roots of P (x)/(x − a) in M . By Proposition
9.3.3, M = K(a)(a2) . . . (ak) = K(a, a2, . . . , ak) and thus M is generated over K by roots in M .
Consequently, M is a splitting field of P (x) over K.

(ii) We work by induction on deg(P ). If deg(P ) = 1, we are done. Suppose deg(P ) > 1. Let
a ∈ M be a root of P (x) in M and Q(x) ∈ K[x] be its minimal polynomial. As Q(x)|P (x), Q(x)
splits in M and also in L.

Now let a1 be a root of Q(x) in L. Note from before that M |K(a) is a splitting extension
of P (x)/(x − a) ∈ K(a). Similarly, L|K(a1) is a splitting extension of P (x)/(x − a1) ∈ K(a1).
Define J := K[x]/(Q(x)). This is a field as Q(x) is irreducible, and there are natural isomorphisms
J ≃ K(a) and J ≃ K(a1) of K-extensions. Considering the J-extensions M |J and L|J from
these isomorphisms, the inductive hypothesis shows the two are isomorphic as J extensions. By
construction, this gives an isomorphism of K-extensions.

(iii) If there are no maps of K-extensions L ↪→ J , we are done. Else, suppose there is a map
ϕ : L ↪→ J of K-extensions. As L is generated over the roots of P (x), the image of ϕ are generated
over K by the image of these roots in J under ϕ. We claim these images are the roots of P (x) in J .

To prove the above claim, let α1, . . . , αd be roots of P (x) in L with multiplicities. Then,

P (x) = xd − s1(α1, . . . , αd)x
d−1 + · · ·+ (−1)dsd(α1, . . . , αd)

Thus, the elements of ϕ(α1), . . . , ϕ(αd) are the roots of

xd − s1(ϕ(α1), . . . , ϕ(αd))x
d−1 + · · ·+ (−1)dsd(ϕ(α1), . . . , ϕ(αd))

= xd − ϕ(s1(α1, . . . , αd))x
d−1 + · · ·+ (−1)dϕ(sd(α1, . . . , αd))

= P (x)

As P (x) has coefficients in K. Now the set of roots of P (x) in J does not depend on ϕ, and so the
claim follows.
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Remark 9.4.4. Let K be a field and P (x) ∈ K[x]. Suppose that there is a field extension K ↪→ L,
where L is algebraicly closed. Let S ⊆ L be the roots of P (x) ∈ L. Then K(S) ⊆ L is a splitting
field for P (x). This follows from the fact P (x) splits in K(S) as L is algebraicly closed, and that
K(S) is generated by the roots of P (x) by construction.

As a specific example, we can generate a splitting field for any polynomial in Q[x] by considering
L = C.

Remark 9.4.5. Any field K has an algebraic field extension K ↪→ K ′ such that K ′ is algebraicly
closed. This is unique up to isomorphism and is called the algebraic closure of K.

9.5 Normal Extensions

Definition 9.5.1. An algebraic extension L|K is called normal if the minimal polynomial over K
of any element of L splits in L.

Note that a splitting extension (field) is by definition a normal extension (field).

Example 9.5.2. Some examples of extensions are

• Q( 3
√
2)|Q is not normal, as the minimal polynomial for 3

√
2, namely x3 + 2, does not split.

• Q(
√
2)|Q is normal, noting that as [Q(

√
2) : Q] = 2, any minimal polynomial in Q(

√
2) has

degree at most 2, which if it has a root, splits.

Lemma 9.5.3. Let M = K(α1, . . . , αk)|K be an algebraic field extension. Let J |K be an extension
in which the polynomial

∏k
i=1mαi ∈ K[x] splits. Then the set of maps of K-extensions M → J is

finite and non-empty. If mαi are all separable, there are [M : K] such maps.

Proof. We first prove that this set is finite and non-empty. By Corollary 9.3.5, there is an extension
of the map K ↪→ J to K(α1), and only finitely many choices for such extension. The minimal
polynomial of α2 over K(α1) divides mα2 and has a root in J as mα2 splits in J . Thus, again, there
is an extension from the ring map K(α1) ↪→ J to K(α1)(α2) = K(α1, α2) ↪→ J , and only finitely
many such. Repearing shows the same is the case for K(α1, . . . , αk) =M ↪→ J .

For the cardinality of the set, we note that there are [K(α1) : K] = deg(mα1) extensions of
maps K ↪→ J to K(α1). Continuting, for any ring map K(α1) ↪→ J , there are [K(α1, α2) : K(α1)]
extensions of this map to a map K(α1, α2) ↪→ J . By the tower law, there are

[K(α1) : K][K(α1, α2) : K(α1)] = [K(α1, α2) : K]

extensions of the map K ↪→ J to a ring map K(α1, α2) ↪→ J . Continuting,

[K(α1) : K] · · · [M : K(α1, . . . , αk−1)] = [M : K]

extensions of the map K ↪→ J to a ring map M ↪→ J .

Theorem 9.5.4. A finite field extension L|K is normal if and only if it is a splitting extension for
a polynomial with coefficients in K.

Proof. (⇒) Suppose that L|K is finite and normal. Let α1, . . . , αk be generators for L over K (as
a K-basis). Define

P (x) :=

k∏
i=1

mαi(x)
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where mαi(x) is the minimal polynomial for αi over K. Then, by assumption, P (x) splits in L and
the roots of P (x) generate L, so L is a splitting field for P (x).

(⇐) Suppose that L is a splitting field of a polynomial in K[x]. Let α ∈ L and β1, . . . , βk ∈ L be
such that L = K(α, β1, . . . , βk). Let J be a splitting field of the products of the minimal polynomials
over K over the elements α, β1, . . . , βk. Choose a root ρ in J of the minimal polynomial Q(x) of α
over K. By Corollary 9.3.5, there is an extension of the map K ↪→ J to a ring map µ : K(α) ↪→ J
such that µ(α) = ρ. By Lemma 9.5.3, there is an extension of µ to a ring map λ : L ↪→ J . By
Theorem 9.4.3, the image of λ on L in J is independent of λ and thus of µ. Consequently, as we
have not fixed ρ, the image of λ with L in J contains all the roots of Q(x). Thus, Q(x) splits in the
image of λ. As Q(x) has coefficients in K and λ gives an isomorphism between L and the image of
λ, Q(x) splits in L.

Theorem 9.5.5. Let L|K be a splitting field of a separable polynomial over K. Then we have
#AutK(L) = [L : K].

Proof. Apply Lemma 9.5.3 with L =M = J .

Theorem 9.5.6. Let ι : K ↪→ L be a finite field extension. Then AutK(L) is finite. Furthermore,
the following are equivalent :

1. ι(K) = LAutK(L)

2. L|K is normal and separable

3. L|K is a splitting extension for a separable polynomial with coefficients in K.

Proof. We first note that if AutK(L) were infinite, we can obtain infinitely many maps of K ex-
tensions L ↪→ J by composing any map L ↪→ J with elements of AutK(L), which contradicts the
result from Lemma 9.5.3.

(i) ⇒ (ii) Let P (x) be the minimal polynomial of some element α ∈ L. We have to show that
P (x) splits and is separable. Define

Q(x) :=
∏

β∈Orb(AutK(L),α)

(x− β)

By definition, Q(x) is separable. Let d := #Orb(AutK(L), α). Let β1, . . . , βd be the elements of
Orb(AutK(L), α). Note that

Q(x) = xd − s1(β1, . . . , βd)xd−1 + · · ·+ (−1)dsd(β1, . . . , βd)

For any γ ∈ AutK(L) and for any i ∈ {1, . . . , d} we have

γ(si(β1, . . . , βd)) = si(γ(β1), . . . , γ(βd))

Noting that si is a symmetric function and γ permutes elements of Orb(AutK(L), α) (by composi-
tion), we have

si(γ(β1), . . . , γ(βn)) = si(β1, . . . , βn)

As γ was arbitrary, we see that si(β1, . . . , βd) ∈ LAutK(L) = ι(K). Thus, Q(x) ∈ ι(K)[x]. We can
therefore identify Q(x) with a polynomial in K[x] with ι.

However, α ∈ Orb(AutK(L), α), so Q(α) = 0. By definition of P (x), P (x)|Q(x), so P (x) splits
in L and has no multiple roots and therefore is separable.
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(ii)⇒ (iii) Let α1, . . . , αk be generators of L over K. Let P (x) :=
∏k
i=1mαi(x), where mαi(x)

is the minimal polynomial of αi over K. Then, P (x) is a separable polynomial by construction and
L is also a splitting extension for P (x).

(iii)⇒ (i) Note first that by construction, ι(K) ⊆ LAutK(L) as any element of AutK(L) fixes the
image of K in L by definition. So, L|K is the composition of extensions LAutK(L)|K and L|LAutK(L).
Note that L|LAutK(L) is also the splitting field of a separable polynomial over LAutK(L) (by taking
the same polynomial for L|K). Also note the identity AutLAutK (L)(L) = AutK(L)

Now, by Theorem 9.5.5, we have

[L : LAutK(L)] = #AutLAutK (L)(L)

and
[L : K] = #AutK(L)

giving [L : LAutK(L)] = [L : K]. The tower law shows that [LAutK(L) : K] = 1, or equivalently,
LAutK(L) = ι(K).

Corollary 9.5.7. Let L|K be an algebraic field extension. Suppose that L is generated by
α1, . . . , αk ∈ L and the minimal polynomial of each αi is separable. Then, L|K is separable.

Proof. By Lemma 9.5.3 and Theorem 9.4.3, there is an extensionM |L such thatM |K is the splitting
field of a separable polynomial (the product of the minimal polynomials). By 9.5.6, the extension
M |K is separable. Thus, the extension L|K is also separable.

9.6 Galois Extensions

Definition 9.6.1. A field extension ι : K ↪→ L is called a Galois extension if LAutK(L) = ι(K). As
notation, ι(K) is often replaced with K (unless there is ambiguity).

If L|K is a Galois extension, write

Gal(L|K) = Γ(L|K) := AutK(L)

and call Gal(L|K) the Galois group of L|K. If L|K is finite, then this is a finite group (by Theorem
9.5.6).

As a consequence of Theorem 9.5.6, a finite field extension L|K is a Galois extension if and only
if L is a splitting field of a separable polynomial over K if and only if it is normal and separable.
As a consequence, if L|K is a finite galois extension which is the composition of two extensions
L|K1 and K1|K, then L|K1 is a finite galois extension. This is because properties like normal and
separable are preserved by such cuts (noting that the minimal polynomial of L over K1 divides that
over K). However, it does not hold in general that K1|K is a galois extension, noting that this need
not be a normal extension.

Definition 9.6.2. Let K be a field and P (x) ∈ K[x] be a separable polynomial. Let L|K be a
splitting field for P (x). We sometimes write Gal(P ) = Gal(P (x)) for Gal(L|K). Note the abuse
of notation, as splitting fields are not related by canonical isomorphism. Thus, in the strict sense,
Gal(P ) refers to an isomorphism class of finite groups.

Lemma 9.6.3. Let K be a field and let G ⊆ AutRings(K) be a finite subgroup. Then [K : KG] ≤ #G.
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Proof. Suppose not. Then, we have a sequence α1, . . . , αd of elements of K which is linearly inde-
pendent over KG and such that d > #G. Let n := #G and let σ1, . . . , σn ∈ G be the enumeration
of G. Consider now the matrix defined by (σi(αj)). The columns are linearly dependent over K as
n < d. Thus, we have a sequence β1, . . . , βd with some non-vanishing term such that

d∑
i=1

βi(σk(αi))

for all k. Choose a sequence β1, . . . , βd such that

r := #{i ∈ {1, . . . , d} | βi ̸= 0}

is minimal. By reordering, suppose that β1, . . . , βr ̸= 0 and that βr+1, . . . , βd = 0. Dividing through
by βr, suppose that βr = 1. As α1, . . . , αd are linearly independent over KG, (noting that βi kills
the identity) we have some i0 ∈ {1, . . . , r} such that βi0 /∈ KG. Note that r > 1 as i0 ̸= r. By
renumbering, we may assume β1 /∈ KG.

Now, take k0 ∈ {1, . . . , n} such that σk0(β1) ̸= β1. Applying σk0 to our first equation, we get

d∑
i=1

σk0(βi)(σk0σk)(αi) = 0

for all k ∈ {1, . . . , n}. Noting that σ only permutes, we have

d∑
i=1

σk0(βi)(σk)(αi) = 0

for all k ∈ {1, . . . , n}. Subtracting with the original equation, this gives

d∑
i=1

(σk0(βi)− βi)(σk)(αi) = 0

for all k ∈ {1, . . . , n}. Noting the definition of r and from βr = 1, we have

r−1∑
i=1

(σk0(βi)− βi)(σk)(αi) = 0

Now, as σk0(β1) ̸= β1, we have a non-zero annihlating sum, which contradicts the minimality of r.
Thus d ≤ n.

Theorem 9.6.4 (Artin’s Lemma). Let K be a field and let G ⊆ AutRings(K) be a finite subgroup.
Then the extension K|KG is a finite Galois extension, and the inclusion G ↪→ AutKG(K) is an
isomorphism of groups.

Proof. First we claim that
KG = KAut

KG
(K)

First note that KG ⊆ KAut
KG

(K) (if you are in KG, you are fixed by things that fix KG). On the
other hand, G ⊆ AutKG(K) (automorphisms in G fix KG). Thus, KG ⊇ KAut

KG
(K). Thus, we

have proven the claim.
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Now, as K|KG is a finite extension by Lemma 9.6.3, we have from Theorem 9.5.6 that K|KG

is a splitting extension of a separable polynomial with coefficients in KG. By Theorem 9.5.5,

[K : KG] = #AutKG(K)

On the other hand, from Lemma 9.6.3, [K : KG] ≤ #G so, we have #AutKG(K) ≤ #G. Now,
G ⊆ AutKG(K) so, #G ≤ #AutKG(K), giving #G = #AutKG(K). Thus, G = AutKG(K).

Finally, Theorem 9.5.6 implies that K|KG is a finite Galois extension with Galois group G.

Theorem 9.6.5 (Fundamental Theorem of Galois Theory). (i) The map

{subfields of L containing ι(K)} 7→ {subgroups of Gal(L|K)}

given by
M 7→ Gal(L|M)

is a bijection. The inverse is given by the map

H 7→ LH

(ii) Let M be a subfield of L containing ι(K). We have

[L :M ] = #Gal(L|M)

and
[M : K] =

#Gal(L|K)

#Gal(L|M)

(iii) Let M be a subfield of L containing ι(K). Then M |K is a Galois extension if and only
if the group Gal(L|M) is a normal subgroup of Gal(L|K). In that case, there is an isomorphism
IM : Gal(L|K)/Gal(L|M) ≃ Gal(M |K).

Proof. (i) By considering the claimed isomorphisms, we want to show that M = LGal(L|M) and
Gal(L|LH) = H for any intermediate field M and any subgroup H ⊆ Gal(L|K).

The first equality is a consequence of the fact that L|M is a Galois extension. The second follows
from Artin’s Lemma.

(ii) The equation [L : M ] = #Gal(L|M) is a consequence of Theorem 9.5.5. The equation
[M : K] = #Gal(L|K)/#Gal(L|M) is a consequence of the tower law and #Gal(L|K) = [L : K].

(iii) Suppose that M is an intermediate field and that M |K is a Galois extension. Then for any
γ ∈ Gal(L|K), γ(M) =M by Theorem 9.4.3 (iii). In particular, we have a homomorphism

ϕM (γ) = γ|M

The kernel of this homomorphism is Gal(L|M) by definition. Hence, Gal(L|M) is normal in
Gal(L|K) by the first isomorphism theorem.

On the other hand, suppose that AutM (L) is a normal subgroup of Gal(L|K). Take γ ∈
Gal(L|K). By definitions,

Autγ(M)(L) = Gal(L|γ(M)) = {µ ∈ Gal(L|K) | µ(α) = α, ∀α ∈ γ(M)}
= {µ ∈ Gal(L|K) | µ(γ(β)) = γ(β), ∀β ∈M}
= {µ ∈ Gal(L|K) | (γ−1µγ)(β) = β, ∀β ∈M}
= γGal(L|M)γ−1

= Gal(L|M)
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By bijective correspondence given in (i), we have M = γ(M). Thus, we have a homomorphism

ϕM : Gal(L|K)→ AutK(M)

given by ϕM (γ) = γ|M . From (ii) and the first isomorphism theorem, im(ϕM ) ⊆ AutK(M) has
cardinality [M : K], with kernel AutM (L). On the other hand, by Artin’s Lemma, we know
[M : M Im(ϕ)] = #Im(ϕM ) such that [M : M Im(ϕ)] = [M : K]. By the tower law, K = M Im(ϕ). In
particular, M |K is a Galois extension and ϕM is therefore surjective.

The isomorphism is uniquely determined by the fact that IM (γ mod Gal(L|M)) = γ|M for any
γ ∈ Gal(L|K).

Remark 9.6.6. Let ι : K ↪→ L be a Galois extension. Let M ⊆ L be an intermediate field. Then
M |K is a Galois extension if and only if the maps of K-extensions M → L have the same image
(which is M).

If all the maps have M as an image, then for all γ ∈ Gal(L|K), γ(M) =M , and thus from the
proof above, M |K is a Galois extension. On the other hand, if M |K is a Galois extension, then
for all γ ∈ Gal(L|K), γ(M) = M by Theorem 9.4.3 (images of embeddings from splitting fields
coincide).

Corollary 9.6.7. Let ι : K → L be a finite separable extension. There are only finitely many
intermediate fields between L and ι(K).

Proof. Without loss of generality, we can extend L to a Galois extension (by Lemma 9.5.3, taking
the splitting field over the minimal polynomials of the generators). The Galois group is finite, and
bijectively corresponds to intermediate fields.

Example 9.6.8. We consider the Galois group of the extension Q(
√
2, i)|Q and of its subfields.

Note first that Q(
√
2, i) is the splitting field of the polynomial (x2 − 2)(x2 + 1) whose roots are

±
√
2,±i. In particular, Q(

√
2, i)|Q is a splitting field of a separable polynomial, thus Galois.

We note the successive extensions Q(
√
2, i)|Q(

√
2)|Q. The minimal polynomial of

√
2 over

Q is x2 − 2, and the polynomial x2 + 1 is the minimal polynomial of i over Q(
√
2). By the

tower law, [Q(
√
2, i) : Q] = 4. By Theorem 9.5.5, we have #Gal(Q(

√
2, i)|Q) = 4. Define

G := Gal(Q(
√
2, i)|Q). By the classification of finite groups, we know that G is abelian, and

that G ≃ Z/2Z × Z/2Z or G ≃ Z/4Z. Note also that #Gal(Q(
√
2, i)|Q(i)) = 2. This follows

from the fact the extension is not trivial (otherwise [Q(
√
2, i) : Q] would equal 2). With similar

logic, #Gal(Q(
√
2, i)|Q(

√
2)) = 2. Groups of order 2 are isomorphic to Gal(Q(

√
2, i)|Q(

√
2)) ≃

Gal(Q(
√
2, i)|Q(i)) ≃ Z/2Z.

By the fundamental theorem of Galois theory, the two subgroups Gal(Q(
√
2, i)|Q(i)) and

Gal(Q(
√
2, i)|Q(

√
2)) cannot coincide, as they correspond to different subfields of Q(

√
2, i). Conse-

quently, G ≃ Z/2Z× Z/2Z.
Z/2Z× Z/2Z has three non trivial subgroups, and we find the third is given by Q(i

√
2).

Example 9.6.9. We also note some field extensions that are not Galois.

• The extension Q( 3
√
2)|Q is not a normal extension, thus not Galois.

• The extension F2(t)[x]/(x
2 − t)|F2(t) is not separable, thus not Galois.

Lemma 9.6.10. Let L|K be a finite Galois extension. Let α ∈ L. Then the minimal polynomial of
α over K is the polynomial ∏

β∈Orb(Gal(L|K),α)

(x− β)
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Proof. Let P (x) =
∏
β∈Orb(Gal(L|K),α)(x− β). Let mα(x) ∈ K be the minimal polynomial of α over

K. We know that P (x) ∈ K[x], thus we have

mα(x)|P (x)

It is therefore sufficient to prove that P (x) is irreducible over K. Suppose for contradiction P (x) =
Q(x)T (x) for Q(x), T (x) ∈ K[x] and deg(Q), deg(T ) > 1. Note that if ρ ∈ L and Q(ρ) = 0,
γ(Q(ρ)) = Q(γ(ρ)) = γ(0) = 0, thus roots of Q(x) in L are stable under the action Gal(L|K). As
Q(x) has a root in L, noting P (x) splits in L and Q(x)|P (x), the set of roots of P (x) contains a
strict subset who is stable under Gal(L|K). This contradicts the fact the set of roots of P (x) is the
orbit of α under Gal(L|K).

Lemma 9.6.11. Let K be a field and let P (x) ∈ K[x]. Let L|K be a splitting extension of P (x)
and let α1, . . . , αn ∈ L be the roots of P (x) with multiplicities. Then,

1. If P (x) has no repeated roots, and ϕ : AutK(L) → Sn satisfies γ(αi) = αϕ(γ)(i), then ϕ is an
injective group homomorphism.

2. If P (x) is irreducible over K and has no repeated roots, the image of ϕ is a transitive subgroup
of Sn

3. The element ∆P := ∆(α1, . . . , αn) lies in K and depends only on P (x)

4. Suppose that char(K) ̸= 2. Suppose also that P (x) has no repeated roots. Then the image of
ϕ lies inside An ⊆ Sn if and only if ∆P ∈ (K∗)2.

Proof. (i) The map is tautologically a group homomorphism. It is injective as L is generated by
the roots, thus an element γ that acts as the identity on the roots must act as the identity on L.

(ii) We only need to show AutK(L) acts transitively on the roots. As P (x) is irreducible, it is
the minimal polynomial of any αi. By Lemma 9.6.10, the roots are an orbit under AutK(L) over
any root, so we are done.

(iii) Note first that

P (x) = xd + ad−1x
d−1 + · · ·+ a0 = xd + s1(α1, . . . , αd)x

d−1 + · · ·+ (−1)dsd(α1, . . . , αd)

By The Fundamental Theorem of Symmetric Functions, there is a unique polynomial Q(x) ∈ K[x]
such that Q(s1, . . . , sd) = ∆(x1, . . . , xd). Thus,

∆(α1, . . . , αn) = Q(−ad−1, ad−2, . . . , (−1)da0)

As this function depends only on P (x) and lies in K, we are done.
(iv) Consider δ(α1, . . . , αn) :=

∏
i<j(αi − αj). For any γ ∈ AutK(L), we have

γ(δ(α1, . . . , αn)) = δ(γ(α1), . . . , γ(αn)) = δ(αϕ(γ)(1), . . . , αϕ(γ)(n)) = sign(ϕ(γ)) · δ(α1, . . . , αn)

As this is a Galois extension, δ(α1, . . . , αn) ∈ K if and only if the image of ϕ lies in An. Now also
note that δ(α1, . . . , αn) ∈ K if and only if ∆P ∈ (K∗)2.

Note the characteristic being non-two is necessary to distinguish between sign, as else
δ(α1, . . . , αn) always lies in K.
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Remark 9.6.12. The key idea is that the Galois group of the splitting field of a degree n polynomial
is a subgroup of Sn. Moreover, if P (x) is irreducible, then it is transitive. If n is prime, then this
means it contains an n-cycle (though not generally, as V4 is transitive on {1, 2, 3, 4}).

The last case is useful to note for when we consider Gal(M |K(
√
∆P )).

Example 9.6.13. Note that

∆(x1, x2, x3) = −4s31s3 + s21s
2
2 + 18s1s2s3 − 4s32 − 27s23

Taking P (x) = x3 − x− 1
3 , The polynomial has no roots in Q (moving it to Z[x] and seeing it has

no roots in F2[x]), thus irreducible. It also has no multiple roots as the characteristic of Q is 0.
Let L|Q be a splitting field for P (x) and take α1, α2, α3 to be the roots of P (x) in L. Matching

coefficients, s3(α1, α2, α3) = −1/3, s2(α1, α2, α3) = −1, s1(α1, α2, α3) = 0, so

∆P = −4s2(α1, α2, α3)
3 − 27s3(α1, α2, α3)

2 = 4− 27

9
= 1

In particular, ∆P ∈ (Q∗)2 (as this is nonzero, it is an alternative way to see it has no repeated
roots).

By the previous Lemma, Gal(L|Q) can be seen as a subgroup of A3. On the other hand, Gal(L|Q)
has order at least 3 as the extension K(αi)|Q has degree 3 for any αi, as P (x) is irreducible. By
the tower law, Gal(L|Q) has order at least 3, thus #A3 = 3, giving Gal(L|Q) ≃ A3.

Theorem 9.6.14 (Primitive Element Theorem). Let L|K be a finite separable extension of fields.
Then there is an element α ∈ L such that L = K(α)

Proof. We prove the case for K being finite and infinite separately.
In the finite case, we have K ≃ Fpn for some prime p and positive integer n. Define Gd := {x |

ord(x) = d} ⊆ {xd = 1} ⊆ F∗
pn . By definition, if Gd ̸= ∅, |Gd| = ϕ(d) and if Gd = ∅, |Gd| = 0. Now,

we have

pn = |F∗
pn |+ 1

=
∑

d|pn−1

|Gd|+ 1

=
∑

d|pn−1

ϕ(d) + 1

= (pn − 1) + 1 = pn

In particular, Gpn−1 is nonempty, thus we have a generator for the field (that is irrespective of the
base field).

If K is an infinite field, noting that L is generated over K by a finite number of elements,
induction shows that it is sufficient to prove that L is generated by one element if it is generated
by two elements. Suppose that L = K(β, γ). For d ∈ K, consider the intermediate field K(β+ dγ).
As there are finitely many such, and as K is infinite, we can find d1, d2 ∈ K such that d1 ̸= d2 and
K(β + d1γ) = K(β + d2γ). We can find a P (x) ∈ K[x] such that β + d1γ = P (β + d2γ), meaning
we have

γ =
P (β + d2γ)− (β + d2γ)

d1 − d2
and

β = (β + d2γ)− d2
P (β + d2γ)− (β + d2γ)

d1 − d2
and in particular, K(β, γ) = K(β + d2γ).
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Proposition 9.6.15. Let F be a field of characteristic 0 and let K = F (β, γ) where β and γ are
algebraic over F . Then there exists a d such that K = F (β + cγ) for some c ∈ F .

Proof. We give a minimum polynomial argument. Suppose that β + cγ is not a primitive element,
such that F (β + cγ) ⊊ F (β, γ). In particular, γ /∈ F (β + cγ). Consider the minimal polynomials
of β and γ over F (β + cγ), calling them f(X), g(X) ∈ F (β + cγ)[X], and take a splitting field L
containing all roots of f(X) and g(X). Since γ /∈ F (β + cγ), there is another root γ′ ̸= γ and a
field automorphism which fixes F (β + cγ) and takes σ(γ) = γ′. Then,

β + cγ = σ(β + cγ) = σ(β) + cσ(γ)

implying

c =
σ(β)− β
γ − σ(γ)

As there are only finitely many field automorphisms AutF (β+cγ)(L) (where L is the splitting field),
there are only finitely many c ∈ F that fail to give the primitive element. All other values give
F (β + cγ) = F (β, γ).

10 Special Classes of Extensions

10.1 Cyclotomic Extension

Definition 10.1.1. Let n ≥ 1. For any field E, define

µn(E) := {ρ ∈ E | ρn = 1}

The elements of µn(E) are called the n-th roots of unity. µn(E) inherits a group structure from
E∗.

Lemma 10.1.2. The group µn(E) is a finite cyclic group.

Proof. This group is clearly finite, as there are at most n elements that satisfy xd − 1 = 0 over a
field.

Suppose that we have two distinct subgroups H,K of µn(E) of the same cardinality, say d. By
Lagrange’s Theorem, we have that elements of both H and K are annihalated by xd − 1, but their
union has cardinality larger than d. This is a contradiction, thus µn(E) is finite cyclic.

Definition 10.1.3. If #µn(E) = n, we call ω ∈ µn(E) a primitive n-th root of unity if it is a
generator of µn(E) (note the initial condition #µn(E) = n).

Note that if ω ∈ µn(E) is a primitive n-th root of unity, all other primitive n-th roots of unity
are of the form ωk where k is an integer coprime to n.

Remark 10.1.4. Let K be a field and suppose that (n, char(K)) = (1). Let L be a splitting field
for the polynomial xn− 1 ∈ K[x]. We denote this by K(µn) (though abusing language, as L is only
well-defined up to non-canonical isomorphism). By construction, xn−1 has no repeated roots, thus
#µn(L) = n and L|K is a Galois extension. L|K is also a simple extension as L is generated over
K by any primitive n-th root of unity in L.

By Lemma 10.1.2, µn(L) ≃ Z/nZ, there are #(Z/nZ)∗ = Φ(n) primitive n-th roots of unity in
L.
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Definition 10.1.5. Define

Φn,K(x) :=
∏

ω∈µn(L),ω primitive

(x− ω)

Note that deg(Φn,K(x)) = Φ(n).

Lemma 10.1.6. The polynomial Φn,K(x) has coefficients in K and depends only on n and K (does
not depend on the choice of splitting field).

Proof. The coefficients of Φn,K(x) are symmetric functions in the primitive n-th roots. As these
roots are permuted by Gal(L|K), the coefficients are invariant under Gal(L|K), and thus lie in K.

The polynomial Φn,K(x) only depends on n and K (and not on the choice of extension), as all
the splitting K-extensions for xn − 1 are isomorphic.

Proposition 10.1.7. There is a natural injection of groups ϕ : Gal(L|K) ↪→ AutGroups(µn(L)) ≃
(Z/nZ)∗. This map is surjective if and only if Φn,K(x) is irreducible over K.

Proof. The first statement is straightforward, noting that µn(L) generates L and Gal(L|K) acts on
L by ring automorphisms.

Let ω ∈ µn(L) be a primitive n-th root of unity. Suppose that Φn,K(x) is irreducible over K.
Since Φn,K(x) annihalates ω, it is the minimal polynomial of ω. In particular, [L : K] ≥ Φ(n), and
thus #Gal(L|K) ≥ Φ(n). On the other hand, we have an injection from Gal(L|K) ↪→ (Z/nZ)∗,
giving #Gal(L|K) ≤ Φ(n). Thus #Gal(L|K) = Φ(n), and by injectivity of this map, ϕ is also
surjective.

Conversely, if ϕ is surjective, then the minimal polynomial of ω is Φn,K(x) by Lemma 7.0.2 and
Lemma 9.6.10.

Proposition 10.1.8. The polynomial Φn,Q(x) is irreducible and has coefficients in Z.

Proof. Let L be a splitting field of xn − 1 ∈ Q[x]. Let ω ∈ L be a primitive n-th root of unity. Let
Q(x) be the minimal polynomial of ω over Q. Then Q(x)|xn − 1, thus we can find a polynomial
T (x) ∈ Q[x] such that Q(x)T (x) = xn − 1. Note that T (x) and Q(x) are monic. Thus 1/c(T ) and
1/c(Q) are both positive integers. On the other hand, c(xn−1) = 1, and noting that 1 = c(T )c(Q),
we see that c(T ) = c(Q) = 1. In particular, Q(x) and T (x) have coefficients in Z.

Fix a prime number p which is coprime to n. We claim that Q(ωp) = 0. Else, we have T (ωp) = 0,
as Q(x)T (x) = xn − 1. In particular ω is a root of T (xp). Thus Q(x)|T (xp). In particular, we have
some H(x) such that Q(x)H(x) = T (xp), where H(x) is also monic. Repeating the same logic as
before, H(x) ∈ Z[x].

Now,
T (xp)(mod p) = (T (x)(mod p))p

in Fp[x] as the p-power function is additive in Fp[x]. In particular, from Q(x)H(x) = T (xp), we see
that (Q(x)(mod p), T (x)(mod p)) ̸= (1). Define J(x) := gcd(Q(x)(mod p), T (x)(mod p)). Then,
J(x)2|xn − 1(mod p), and in particular xn − 1(mod p) has multiple roots, which is a contradiction.
Thus Q(ωp) = 0.

Generally, Q(ωk) = 0 for k coprime to n. Thus, all primitive n-th roots of unity are roots of
Q(x). We see that deg(Q) ≥ Φ(n). By definition, Q(x)|Φn,Q(x), so we have Q(x) = Φn,Q(x). In
particular, Φn,Q(x) is irreducible with coefficients in Z.
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Example 10.1.9. Let p > 2 be prime and ζp := exp(2πi/p). Let K = Q(ζp). The cyclotomic
polynomial is

f(x) =
xp − 1

x− 1
= xp−1 + · · ·+ x+ 1 = Φp,Q(x) =

p−i∏
i=1

(x− ζi)

is by the previous proposition and by Gauss’s Lemma irreducible in Q[x].
In particular [K : Q] = p− 1. So a regular p-gon can be constructed with a ruler and compass

only if p− 1 is a power of 2 (such as 17).

10.2 Kummer Extension

Definition 10.2.1. Let K be a field and n be a positive integer with (n, char(K)) = (1). Suppose
that xn − 1 splits in K. Let a ∈ K and let M |K be a splitting extension for the polynomial xn − a.
We call such extension a Kummer extension

Note that by construction, xn − a is a separable polynomial. In particular, M |K is a Galois
extension.

Lemma 10.2.2. Let M |K be a Kummer extension. Let ρ ∈ M be such that ρn = a. There is a
unique homomorphism ϕ : Gal(M |K)→ µn(K) such that ϕ(γ) = γ(ρ)/ρ. The map does not depend
on the choice of ρ and is injective.

Proof. First, (γ(ρ)/ρ)n = γ(ρn)/ρn = a/a = 1, so in particular γ(ρ)/ρ ∈ µn(K), giving a well-
defined map. Uniqueness follows from the fact the map is defined on all γ.

To see this map does not depend on the choice of ρ, if we have ρn1 = a, then note that (ρ/ρ1)n =
a/a = 1. Thus, there is an n-th root of unity µ ∈ K such that µ = ρ/ρ1 as xn− 1 splits in K. Now,

γ(ρ)/ρ = µγ(ρ)/(µρ) = γ(µρ)/(µρ) = γ(ρ1)/ρ1

So ϕ does not depend on ρ.
To see that ϕ is a group homomorphism, for any γ, λ ∈ Gal(M |K), we have

ϕ(γλ) = γ(λ(ρ))/ρ

and
ϕ(γ)ϕ(λ) = (γ(ρ)/ρ)(λ(ρ)/ρ)

thus it suffices to show
γ(λ(ρ)) = λ(ρ)γ(ρ)/ρ

but this follows immediately from the fact xn − 1 splits in K;

λ(ρ)/ρ = γ(λ(ρ)/ρ) = γ(λ(ρ))/γ(ρ)

Finally ϕ is injective, as if ϕ(γ) = 1, as γ fixes ρ, it fixes any root of xn − a and hence γ = 1.

Remark 10.2.3. Note that from the above proof, Gal(M |K) is cyclic. Let it be isomorphic to Cd,
and pick a generator σ. In particular, taking any root ρ of xn − a, σ(ρ) = ζρ for some ζ with order
d. σi generate distinct images and by dimension argument, we can see that in fact M |K is a simple
extension, generated by any root of xn − a.

Definition 10.2.4. Let E be a field. Let H be a group. A character of H is a group homomorphism
H → E∗.
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Proposition 10.2.5 (Dedekind). Let χ1, . . . , χk be distinct characters of H with values in E∗. Let
a1, . . . , ak ∈ E be such that

a1χ1(h) + · · ·+ akχ(h) = 0

for all h ∈ H. Then a1 = · · · = ak = 0.

Proof. We proceed by induction on k. The result is immediate for k = 1. Suppose k ≥ 2 and the
proposition holds for any smaller parameter. If ai all vanish, we are done. Else, up to reordering,
without loss of generality, suppose that a2 ̸= 0.

Pick α ∈ H such that χ1(α) ̸= χ2(α). Now for any β ∈ H, we have
k∑
i=1

aiχi(αβ) =
k∑
i=1

aiχi(α)χi(β) = 0

And

χ1(α)
k∑
i=1

aiχi(β) =
k∑
i=1

a1χ1(α)χi(β)

Subtracting,
k∑
i=2

ai(χi(α)− χ1(α))χi(β) = 0

As this holds for any β ∈ H, we have from the inductive hypothesis that a2 = 0, a contradiction.

Theorem 10.2.6. Let K be a field and n be a positive integer with (n, char(K)) = (1). Suppose
that xn − 1 splits in K. Suppose also that L|K is a Galois extension and that Gal(L|K) is a cyclic
group of order n.

Now let σ ∈ Gal(L|K) be a generator of Gal(L|K) and ω ∈ K is a primitive n-th root of unity
in K. For any α ∈ L, let

β(α) := α+ ωσ(α) + ω2σ2(α) + · · ·+ ωn−1σn−1(α)

Then,

• For any α ∈ L, β(α)n ∈ K

• There is an α ∈ L such that β(α) ̸= 0.

• If β(α) ̸= 0, then L = K(β(α)) (such that L is the splitting field of xn − β(α)n)

Proof. Let α ∈ L. Compute

σ(β(α)) = σ(α) + ωσ2(α) + ω2σ3(α) + · · ·+ ωn−1α = ωn−1β(α) = ω−1β(α)

In particular, σi(β(α)) = ω−iβ(α) Furthermore, we have

σ(β(α)n) = σ(β(α))n = ω−nβ(α)n = β(α)n

As L|K is Galois, we have β(α)n ∈ K. Note that any element of Gal(L|K) defines a character on
L∗ with values in L∗. By Dedekind, there is some α such that β(α) ̸= 0. As ω−iβ(α) are roots of
xn − β(α)n, it splits in L.

Now, Gal(L|K) acts transitively and faithfully (the only element in Gal(L|K) that fixes all the
roots is the identity) on the roots of xn − (β(α))n. In particular, xn − β(α)n is irreducible over K.
Thus [K(β(α)) : K] = n = [L : K], which from the tower law, we conclude K(β(α)) = L. Thus L
is a splitting field for xn − β(α)n.
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10.3 Radical Extension

Definition 10.3.1. The field extension L|K is said to be radical if L = K(α1, . . . , αk) and there
are natural numbers n1, . . . , nk such that αn1

1 ∈ K,α
n2
2 ∈ K(α1), . . . , α

nk
k ∈ K(α1, . . . , αk−1).

By definition, if L|K and M |L are radical extensions, M |K is a radical extension.

Example 10.3.2. Kummer extensions are radical. This is an immediate consequence of the fact
Kummer extensions L|K are simple extensions generated by any root of xn − a for a ∈ K.

Lemma 10.3.3. Let L|K be a radical extension and let J |L be a finite extension such that the
composed extension J |K is a Galois extension. Then there is a field L′ which is intermediate
between J and L such that L′|K is Galois and radical.

Proof. Suppose that L = K(α1, . . . , αk) and that we have natural numbers n1, . . . , nk such that
αn1
1 ∈ K,α

n2
2 ∈ K(α1), . . . , α

nk
k ∈ K(α1, . . . , αk−1). Let G := Gal(J |K) = {σ1, . . . , σt}. Then for

any i ∈ {1, . . . , k} and σ ∈ G, we have

σ(αnii ) = σ(αi)
ni ∈ σ(K(α1, . . . , αi−1)) = K(σ(α1), . . . , σ(αi−1))

In particular,

K(α1, . . . , αk, σ1(α1), . . . , σ1(αk), . . . , σt(α1), . . . , σt(αk)) = K(Orb(α1), . . . ,Orb(αk))

is a radical extension of K. Now, given σ ∈ G, we have

σ(K(Orb(α1), . . . ,Orb(αk))) = K(σ(Orb(α1)), . . . , σ(Orb(αk))) = K(Orb(α1), . . . ,Orb(αk))

we see that K(Orb(α1), . . . ,Orb(αk))|K is a Galois extension (field fixed by Galois group actions).
Thus we may set L′ := K(Orb(α1), . . . ,Orb(αk)).

K L = K(α1, . . . , αk) J

L′ = K(Orb(α1), . . . ,Orb(αk))

10.3.1 Solvability by Radical Extensions

Theorem 10.3.4. Suppose that char(K) = 0. Let L|K be a finite Galois extension.
If Gal(L|K) is solvable, then there exists a finite extension M |L with the following properties

1. The composed extension M |K is Galois

2. There is a map of K-extensions K(µ[L:K]) ↪→M

3. M is generated by the images of L and K(µ[L:K]) in M .

4. The extension M |K(µ[L:K]) is a composition of Kummer extensions. In particular, M |K is a
radical extension.
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Conversely, if there exists a finite extension M |L such that the composed extension M |K is
radical, then Gal(L|K) is solvable.

Proof. First note that the images of L and K(µc) in M do not depend on the maps of K-extensions
L ↪→M and K(µ[L:K]) ↪→M as the two are both galois extensions.

Let d := #Gal(L|K) = [L : K]. There is a Galois extension of K and maps of K extensions
K(µd) ↪→ J and L ↪→ J by the existence of splitting extensions and Lemma 9.5.3. Choose such an
extension and maps of K-extensions. Now, let P be the field generated by L and K(µd) in J . Then
we have

J

P

L K(µd)

K

Let G := Gal(J |K). We can observe the following:

1. P |K is a Galois extension, as it is fixed by any σ ∈ G (as the fields they are generated by are
Galois)

2. P |K(µd) is Galois by lifting from K.

3. The restriction map Gal(P |K(µd))→ Gal(L|K) is injective. If σ ∈ Gal(P |K(µd)) restricts to
the identity in L, it fixed both K(µd) and L, thus fixes P .

Suppose now that Gal(L|K) is solvable. Then, by Lemma 7.1.3 and injectivity of Gal(P |K(µd))
into Gal(L|K), Gal(P |K(µd)) is solvable. In particular, there is a finite filtration with abelian
quotients

0 = H0 ⊆ H1 ⊆ · · · ⊆ Hn = Gal(P |K(µd))

By Lemma 7.1.7, we may assume without loss of generality that the quotients of the filtration are
cyclic. By the fundamental theorem of Galois Theory, the subgroups Hi correspond to a descreasing
sequence of subfields of P

P = P0 ⊇ P1 ⊇ · · · ⊇ Pn = K(µd)

such that Pi|Pi+1 is a Galois extension for any i. Also,

Hi+1/Hi ≃ Gal(P |Pi)/Gal(P |Pi+1) ≃ Gal(Pi|Pi+1)

such that Gal(Pi|Pi+1) is cyclic. By Lagrange’s Theorem (applied repeatedly) #(Hi+1/Hi) is a
divisor of #Gal(P |K(µd)) and thus of #Gal(L|K) = d. In particular, x#Gal(Pi|Pi+1) − 1 splits in
K(µd), and so in Pi+1. By Theorem 10.2.6, Pi|Pi+1 is a Kummer extension, thus a radical extension.
Setting M := P , we have shown this satisfies all our mentioned properties.

To prove the other direction, suppose that we have a finite extensionM |L such that the composed
extension M |K is radical. We may thus suppose that M = K(α1, . . . , αk) and there are n1, . . . , nk
such that αn1

1 ∈ K, . . . , α
nk
k ∈ K(α1, . . . , αk−1). Let t :=

∏k
i=1 ni. Choose a Galois extension J |K
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such that there are maps of K-extensions M ↪→ J and K(µt) ↪→ J . Fixing maps, let E be the
intermediate field generated by M and K(µt) in J . Thus, we have a diagram of extensions

J

E

M K(µt)

L K

By definition, E = K(µt)(α1, . . . , αk), and by construction each
K(µt)(α1, . . . , αi+1)|K(µt)(α1, . . . , αi) is a Kummer extension, as ni|t. In particular, the
Galois group is abelian. Now Gal(K(µt)|K) is abelian also. By the Fundamental Theorem for
Galois groups, we see that Gal(E|K) is solvable. Finally, as Gal(L|K) is a quotient of Gal(E|K),
Gal(L|K) is solvable.

Definition 10.3.5. Let P (x) ∈ K[x] and let L|K be a splitting extension for P (x). We say P (x) is
solvable by radicals if there is an extension M |L such that the composed extension M |K is radical
(as the splitting extensions are isomorphic, the choice does not matter). By the previous theorem,
P (x) is solvable by radicals if and only if Gal(L|K) is solvable.

Corollary 10.3.6. Let n ≥ 5 and K be a field. The extension K(x1, . . . , xn)|K(x1, . . . , xn)
Sn is

not radical. (Note the action is induced by the action of Sn on K[x1, . . . , xn])

Proof. By Artin’s Lemma, K(x1, . . . , xn)|K(x1, . . . , xn)
Sn is a Galois extension. On the other hand,

Sn is not solvable for n ≥ 5, so by Theorem 10.3.4, is not radical.

Remark 10.3.7. To see K(x1, . . . , xn)|K(x1, . . . , xn)
Sn is a Galois extension directly, note that it

is the splitting field of the polynomial

Un(x) = xn − s1(x1, . . . , xn)xn−1 + · · ·+ (−1)nsn(x1, . . . , xn) ∈ K(x1, . . . , xn)
Sn [x]

And the roots are x1, . . . , xn generate the field.

Example 10.3.8 (Solution to the General Cubic Equation). Let K be a field and suppose that
char(K) = 0. We wish to solve the cubical equation

y3 + ay2 + by + c = 0

where a, b, c ∈ K. Letting x = y + a
3 , we see that this is equivalent to solving

x3 + px+ q = 0

where p = −1
3a

2 + b and q = 2
27a

3 − 1
3ab+ c. So let P (x) = x3 + px+ q. We wish to find a solution

that starts with p, q and iteratively applies multiplication, addition, multiplication by K, extraction
of 2nd and 3rd roots.

Let L|K be a splitting extension for P (x). Let ω ∈ K(µ3) ne a primitive 3rd root of unity. Now
by Lemma 9.5.3 we can choose a finite Galois extension J |K and maps of K extensions L ↪→ J and
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K(µ3) = K(ω) ↪→ J . Let M = L(ω) be the field generated in J by the images of L and K(ω) in J .
So we have the following

M = L(ω)

L K(µ3) = K(ω)

K

Now note that Gal(L|K) is solvable as it injects into S3, and thus M |K is radical by Theorem 10.3.4
(from which we should be able to retrieve an expression for ω).

Consider the sequence of extensions

K ↪→ K(ω) ↪→ K(ω,
√
∆P ) ↪→M

As the square root of ∆P is a polynomial in the roots of P (x), it lies in L.
Now note that

11 Main Ideas in GT - No definitions

The concept of multiple roots (on P (x) ∈ K[x]) is invariant under

• field extension. (Pf. ED algorithm is unique in computing a generator)

• polynomials Q(x) such that Q(x)|P (x)

The gcd of P,Q is the generator of (P,Q)
If P ′ ̸= 0 and P is irreducible, it has no multiple roots.
Extension of maps :

K L

K(α)

is determined by sending α to the roots of mα in L, where mα is the minimal polynomial of α
with coefficients in K. So the cardinality of maps is the number of roots of mα in L. This is a
consequence of the fact K(α) ≃ K[x]/mα.

- composition of normal extensions need not be normal, consider Q(
√
2) and Q( 4

√
2).

11.1 Relating Field Extensions

• Splitting fields exist for any polynomial

K M
∃sP

• Lemma 10.3.3: If L|K is a radical extension and J |L is a finite extension such that J |K is a
Galois extension, there is an intermediate field L′ between J and L such that L′|K is Galois
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and radical

K L = K(α1, . . . , αk) J

L′ = K(Orb(α1), . . . ,Orb(αk))

r

g

r

11.2 Examples of Galois Extensions

Example 11.2.1. Consider K = Q(
√
2,
√
3) as a field extension over Q. K is the splitting field

over the separable polynomial (x2−2)(x2−3), thus is Galois. Field automorphisms must send each
generator to their conjugates, so our choice is

√
2 7→ ±

√
2

√
3 7→ ±

√
3

giving G = Gal(K|Q) ≃ C2 × C2. By Galois correspondence, the nontrivial subgroups give inter-
mediate fields, where the correspondence is given by KH where H ⊆ G. Taking the subgroup that
flips

√
2, we have

KH2 = {a+ c
√
3 | a, c ∈ Q} = Q(

√
3)

and similarly with H3. The map that flips
√
2 and

√
3 would be

KH2,3 = {a+
√
d | a, d ∈ Q} = Q(

√
6)

We also give an example of a Kummer extension.

Example 11.2.2. Let K = Q( 3
√
2, ζ3) where ζ3 = e2πi/3. This is the splitting field over the

separable polynomial x3 − 2. The galois group is generated by choices of maps

3
√
2 7→ ζk3

3
√
2, k = 0, 1, 2 ζ3 7→ ζ±1

3

Now note that [Q( 3
√
2) : Q] = 3 and [Q(ζ) : Q] = 2, and as ζ /∈ Q(α),[K : Q] = 6 by the tower

law. In particular |G| = 6, and we can check via relations that this is S3. The proper subfields
correspond to the subgroups of S3 which correspond to subfields Q(ζ3),Q( 3

√
2),Q(ζ3

3
√
2),Q(ζ23

3
√
2).

Example 11.2.3. Taking K = Q(ζ5) where ζ5 = e2πi/5. This is a cyclotomic field which has
Galois group Gal(Q(ζ5)|Q) ≃ (Z/5Z)× ≃ C4. C4 has exactly one nontrivial subgroup of order 2,
whose automorphism set is {id, σ2}. As σ2 sends ζ5 to ζ45 = ζ−1

5 , it fixes ζ5 + ζ−1
5 whose minimum

polynomial is x2 + x− 1.

Remark 11.2.4. The above give rise to a variety of examples [K : F ] such that K|F is Galois but
there are intermediate fields F ⊊ L ⊊ K such that L|F is not Galois. For instance, take F = Q
and L = Q( 3

√
2), K = Q( 3

√
2, ζ3).

Example 11.2.5. Let f := t4 − 4t2 + 2 and α ∈ C be a root of f . Then Q(α) is the splitting field
of f , by noting how the roots relate to each other. Also, we have the tower of extensions

Q ⊊ Q(
√
2) ⊊ Q(α)

which shows the extension has degree 4. Explicit mappings of roots shows that Gal(Q(α)|Q) ≃ C4.
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11.3 Important Things to Keep in Mind

• Splitting extensions always exist (induction by repeatedly quotienting by irreducible factors
of P , and noting this always produces roots)

• Splitting extensions are (non-canonically) isomorphic as K-extensions (induction with quoti-
enting with a min-poly of a root of P )

• Extensions from splitting fields preserve image (because any automorphism only permutes
roots)

• Number of injections from simple extensions K(α) to J depends on root presense (of minpoly)
in J (bijective correspondence).

• Taking K(α1, . . . , αk), there is a nonempty/finite number of injections to fields where the
product of the minpoly split. By bijective correspondence, there are ‘tower’ many ([M : K]
many) when the minpolys separate.

• Normal iff splitting extension for poly with coefficients in K (⇒, consider product of minpoly
of generators, ⇐, pick any α ∈ L, extend to splitting field of prod of minpoly, induce map λ
from L to splitter, by image invariance λ(L) contains all roots of α, splits.)

• Galois correspondence with intermediate fields and raising base fields, use Artin with identity
(Gal(K|KG) = G), inverse given by H 7→ LH

• Lowering to subfield from L to M only works if Gal(L|M) is a normal subgroup of Gal(L|K)
(use FIT, image fixing of M by γ ∈ Gal(L|K), kernel argument) (reverse, navigate through
to show Gal(L|γ(M)) = Gal(L|M), which implies M = γ(M) by FTGT) (image invariance
lets us define maps about M) (Gal(L|K)/Gal(L|M) ≃ Gal(M |K)).

• ↑ also lets us lower galois field by image invariance

• Kummer has cyclic Galois group (injects into roots of unity) (injective by root fixing argument)

- adding ideals, coprime (sums to entire ring)
Some background lemmas :

• Gauss’s Lemma (irreducible in Z[t] implies irreducible in Q[t]), content function to show there
exists λ ̸= 0 such that λg, λ−1h ∈ Z[t].

• Eisenstein

Definition 11.3.1. A number field or algebraic number field is a finite extension K of Q. The
index [K : Q] is the degree of the number field.

Theorem 11.3.2. If K is a number field, then K = Q(θ) for some algebraic number θ ∈ K.

Theorem 11.3.3. Let K = Q(θ) be a number field of degree n over Q. Then there are exactly n
distinct monomorphisms (embeddings)

σi : K → C

The elements σi(θ) are the distinct zeros in C of the minimal polynomial mθ of θ over Q.

Definition 11.3.4. If σi(K) ⊆ R, then σi is called a real embedding, otherwise it is called a
complex embedding.
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Definition 11.3.5. A square matrix over Z is called unimodular if it has determinant ±1.

Note that A is unimodular if and only if A−1 has coefficients in Z. (Proof sketch, by considering
what EROs transform A into an identity.)

Lemma 11.3.6. Let G be a free abelian group of rank n with Z-basis {x1, . . . , xn}. Suppose (aij)
is a square matrix with integer entries. Let

yi =
∑
j

aijxj

Then the elements {y1, . . . , yn} form a Z-basis for G if and only if (aij) is unimodular.

Proof. TODO!!

Theorem 11.3.7. Let G be a free abelian group of rank n, and H be a subgroup. Then G/H is
finite if and only if H has rank n. Moreover, if G and H have Z-basis {x1, . . . , xn} and {y1, . . . , yn}
with yi =

∑
j aijxj, we have

#G/H = |det(aij)|

Proof. TODO!!!

12 Definitions

Definition 12.0.1. Let K|Q be an algebraic number field of degree n, and let α ∈ K. Let σi : K → C
be the n embeddings. We call σi(α) the K-conjugates of α.

We define the trace to be TrK|Q(α) =
∑n

i=1 σi(α) and the norm NormK|Q(α) = NK|Q(α) =
N(α) =

∏n
i=1 σi(α). When K = Q(α), we call these the absolute conjugates, trace, and norm.

Proposition 12.0.2. We record the following properties :

• For any K = Q(β), suppose that β has minimal polynomial mβ(X). If β1, . . . , βn are the n
roots of mβ in C, then one can choose embeddings σi : β → βi.

• NormK|Q(γδ) = NormK|Q(γ)NormK|Q(δ)

• NormK|Q(γ) = 0 if and only if γ = 0.

• NormK|Q(q) = qn for q ∈ Q.

• If K = Q(α) and mα(X) = Xn + cn−1X
n−1 + · · ·+ c0, then we have NormK|Q(α) = (−1)nc0

and NormK|Q(α) = −cn−1. In particular, the norm and trace are both in Q. Generally
speaking, for any K = Q(β), α ∈ K, the norm and trace of α are symmetric functions of the
conjugates of σi(α), thus in Q.

Proof. Immediate. The last line follows as a consequence of the Fundamental Theorem on the
theory of symmetric functions.

Definition 12.0.3. Let w = {w1, . . . , wn} be a n-tuple of elements of K, where n = [K : Q].

• The determinant is ∆(w) := det(σi(wj))

• The discriminant of w is ∆(w)2
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Lemma 12.0.4. ∆(w)2 = det(TrK|Q(wiwj)) and consequently ∆(w)2 ∈ Q.

Proof. Let A = (σi(wj)). Then,

∆(w)2 = det(A)2 = det(ATA) = det

(∑
k

σk(wi)σk(wj)

)

= det

(∑
k

σk(wiwj)

)
= det(TrK|Q(wiwj))

Lemma 12.0.5. If v = {v1, . . . , vn} is a basis for K|Q and w = {w1, . . . , wn} ⊆ K with wi =∑
j cijvj and cij ∈ Q, then

∆(w) = det(C)∆(v)

Proof. Write Av = (σi(vj)) and Aw = (σi(wj)) such that ∆(v) = det(Av) and ∆(w) = det(Aw).
Now,

Aw = (σi(wj)) =

(
σi

(∑
k

cjkvk

))
=

(∑
k

cjkσi(vk)

)
= AvC

T

The proof thus follows by taking det on both sides.

Lemma 12.0.6. If K = Q(α) and v = {1, α, . . . , αn−1}, then

∆(v)2 =
∏
i<j

(αj − αi)2

where αi are the conjugates of α.

Proof. Note first that

∆(v) =

∣∣∣∣∣∣∣∣∣
1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
...

...
1 αn α2

n · · · αn−1
n

∣∣∣∣∣∣∣∣∣
which is the so-called van der Monde determinant. We note that this is a polynomial of degree
n(n− 1)/2 in α1, . . . , αn. As it vanishes when we set αi = αj , the polynomial is divisible by αi−αj
for all i < j. There are n(n − 1)/2 such factors. By observing the diagonal, the coefficient of
α2α

2
3 · · ·αn−1

n is 1, so we must have

∆(v) =
∏
i<j

(αj − αi)

Corollary 12.0.7. ∆(w1, . . . , wn) ̸= 0 if and only if w1, . . . , wn is a basis for K|Q.

Proof. Suppose K = Q(α) and let v = {1, α, . . . , αn−1}. Noting the previous lemma, as αi are
distinct, we must have ∆(v) ̸= 0.

By Lemma 12.0.5, using C as a change of basis, ∆(w) ̸= 0 for any other basis w of K|Q. If w
is not a basis, then det(C) = 0, giving ∆(w) = 0.
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13 Specific Domains

13.1 Unique Factorization Domain

Definition 13.1.1. R is a unique factorisation domain if R is an integral domain, and for all
nonzero and nonunit α ∈ R, there exists irreducible β1, . . . , βn ∈ R such that

1. α = β1, . . . , βn

2. If α = γ1, . . . , γm with irreducible γi, then m = n and there exists a permutation σ such that
βi and γσ(i) are conjugates.

Proposition 13.1.2. Suppose that R is an integral domain in which factorisation into irreducibles
is possible. Then the following are equivalent

1. Factorization is unique

2. Irreducible elements are prime

Proof. Sketch. If the factorisation is unique and we have an irreducible p such that p|xy, pc = xy,
by unique factorisation p is a factor of x or y.

If irreducible elements are prime, for any factorisation
∏
xi and

∏
yi, taking xi divides some yj

by primality, and by irreduciblity shows they are associates. We can inductively show factorisation
is unique.

14 Ring of Integers

14.1 Basic Definitions

Definition 14.1.1. We say that α ∈ K is an algebraic integer if there exists a monic g(x) ∈ Z[x]
such that g(α) = 0. We define OK as the set of all algebraic integers in O.

Proposition 14.1.2. Some basic properties :

• Suppose α ∈ K. Then α ∈ OK if and only if the minimal polynomial is in Z[x] by Gauss’s
lemma.

• Pick any α ∈ K such that there is a monic polynomial αd + ad−1α
d−1 + · · ·+ a0 = 0 ∈ Q[x].

Picking an n, we have

(nα)d + nad−1(nα)
d−1 + · · ·+ nda0 = 0

thus, picking an n to clear the denominators of all ai, we get nα ∈ OK .

• The minimal polynomial of r ∈ Q is x − r which is in Z[x] if and only if r ∈ Z. Thus if
K = Q, then OK = Z. Generally, Z ⊆ OK .

Proof. Immediate.

Example 14.1.3 (OK for K = Q(
√
d) for d ∈ Z). Without loss of generality, we assume that d ̸= 1

and is square-free. First note that [K : Q] = 2, and K has a Q-basis {1,
√
d}.

Taking any a, b ∈ Q, α = a+ b
√
d ∈ K. Noting σ1(α) = a+ b

√
d and σ2(α) = a− b

√
d, we have

TrK|Q(α) = 2a and NormK|Q(α) = a2 − db2. Given b ̸= 0, we have mα(x) = x2 − 2ax+ (a2 − db2).
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Thus α ∈ OK if and only if 2a, a2 − db2 ∈ Z. Suppose that α ∈ OK . Then (2a)2 − d(2b)2 ∈ Z,
giving d(2b)2 ∈ Z. Writing 2b = u/v, we have du2v−2 ∈ Z, such that v2|du2. As d is square free, we
have v|u, giving 2b ∈ Z. Write 2a = A and 2b = B with A,B ∈ Z. Then we have A2 ≡ dB2 mod 4.

Now a case split,

• d ≡ 2 or 3 mod 4. Then we must have A,B both even, giving a, b ∈ Z

• d ≡ 1 mod 4. Then A ≡ B mod 2, so a, b are both in Z or both in Z+ 1/2.

• d ≡ 0 mod 4 does not occur as d is square free

Thus, we have

OK =

{
⟨1,
√
d⟩ = {m+ n

√
d | m,n ∈ Z} d ≡ 2, 3 mod 4

⟨1, 1+
√
d

2 ⟩ = {m+ n1+
√
d

2 | m,n ∈ Z} d ≡ 1 mod 4

Lemma 14.1.4. α ∈ K is an algebraic integer if and only if there exists a non-zero finitely generated
Z-module M ⊆ K such that αM ⊆M .

Proof. Suppose that α ∈ OK such that αd + ad−1α
d−1 + · · · + a0 = 0 with ai ∈ Z. Taking

M = ⟨1, α, . . . , αd−1⟩, we have αM ⊆M .
Conversely, suppose M ⊆ K is a non-zero finitely generated Z-module such that αM ⊆ M .

Take w1, . . . , ws to be a generating set for M , and write

αwi =
∑
j

cijwj

with cij ∈ Z. Taking C = (cij), we have

(αI − C)


w1

w2
...
ws

 =


0
0
...
0


such that α satisfies det(xI − C), a monic polynomial with integer coefficients. Thus α ∈ OK .

Theorem 14.1.5. Let K be an algebraic number field. If α, β ∈ OK , then α+ β, αβ ∈ OK .

Proof. Suppose α, β ∈ OK . By Lemma 14.1.4, we have finitely generated Z-modules M,N such
that αM ⊆M and βN ⊆ N .

Now, MN is finitely generated, and

(α+ β)MN ⊆ (αM)N +M(βN) ⊆MN

(αβ)MN ⊆ (αM)(βN) ⊆MN

It follows again from Lemma 14.1.4 that α+ β, αβ ∈ OK .

Remark 14.1.6. The above also follows as a direct consequence from the fact given any A that is
a subring of B, elements of B that are integral over A form a subring.

Corollary 14.1.7. If α ∈ OK , then TrK|Q(α),NormK|Q(α) ∈ Z.
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Proof. Let α ∈ OK . Then all the K|Q conjugates α1, . . . , αn belong to the splitting field of the
minimal polynomial, OL. Now, TrK|Q(α) ∈ OL and NormK|Q(α) ∈ OL by Theorem 14.1.5. Now
the trace and norm are both in Q, and Q ∩ OL = Z.

Definition 14.1.8. α ∈ OK is a unit if α−1 ∈ OK .

Lemma 14.1.9. Let OK be the ring of integers in a number field K, and let α, β ∈ OK . Then,

1. α is a unit in OK if and only if NormK|Q(α) = ±1

2. If α and β are associates in OK , then NormK|Q(α) = ±NormK|Q(β)

3. If NormK|Q(α) is a rational prime (primes in Z), then α is irreducible in OK .

Proof. (i) Suppose that α is a unit. Then,

NormK|Q(α)NormK|Q(α
−1) = NormK|Q(αα

−1) = NormK|Q(1) = 1

which is a product of elements in Z, so both are ±1.
Conversely, if NormK|Q(α) = ±1, let α1, . . . , αn be the K|Q conjugates with α = α1. Then,

α1 . . . αn = ±1, such that α(α2 . . . αn) = ±1. Hence, α−1 = ±(α2 . . . αn), which is in OL (the
splitting field of the minimal polynomial) by Theorem 14.1.5. As K is a field, α−1 lies in K, giving
α−1 ∈ OL ∩K = OK .

(ii) We have α = uβ for some unit u, so

NormK|Q(α) = NormK|Q(u)NormK|Q(β) = ±NormK|Q(β)

by (i)
(iii) Let α = γδ. Then NormK|Q(α) = p = NormK|Q(γ)NormK|Q(δ) for some prime p ∈ Z. The

result again follows from (i)

Remark 14.1.10. The converse for (ii) and (iii) are false. Take K = Q(
√
−5), where the ring

OK = Z[
√
−5].

Note first we have a factorisation 6 = 2 · 3 = (1−
√
−5) · (1 +

√
−5) in OK . Now, NormK|Q(a+

b
√
−5) = a2 + 5b2, so the norm in our factors are 4, 9, 6, 6 respectively. If any of these elements

are not irreducible, we should be able to find α = βγ such that the norm of β, γ lie in ±2 or ±3.
Clearly, no such solutions exist. By Lemma 14.1.9 (ii), we see this factorisation is not unique.

Note that the norm for 1 +
√
−5 and 1−

√
−5 are equal but are not associates (only units are

±1) Also, we have clearly exhibited an α that is irreducible with non-prime norm.

Definition 14.1.11. w1, . . . , wn ∈ OK is said to be an integral basis for OK if OK = {
∑

j cjwj |
cj ∈ Z}.

Equivalently, w1, . . . , wn is a Z-basis for OK . We sometimes call this set the integral basis for
K.

Example 14.1.12. Taking K = Q(
√
d), where d is a square-free integer such that [K : Q] = 2, OK

has integral basis {
{1,
√
d} d ≡ 2, 3 mod 4

{1, 1+
√
d

2 } d ≡ 1 mod 4
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Remark 14.1.13. Let v = {v1, . . . , vn} and w = {w1, . . . , wn} be any two Q-bases of K. Define
M = ⟨v1, . . . , vn⟩Z and N = ⟨w1, . . . , wn⟩Z be the Z-submodules of K. Suppose that v, w ⊆ OK .
Then ∆(v)2 and ∆(w)2 both lie in Z, as ∆(v)2 = det(TrK|Q(vivj)).

Suppose now that N ⊆ M . Then we can find cij ∈ Z such that wi =
∑n

j=1 cijvj . Define
C = (cij).

By Theorem 11.3.7, we have

|det(C)| = [M : N ] = #M/N =: m

as additive groups. By Lemma 12.0.5, we have

∆(w)2 = (det(C))2∆(v)2 = m2∆(v)2

If M = N , then by Lemma 11.3.6, C is unimodular, thus ∆(w)2 = ∆(v)2.

Definition 14.1.14. Let M be any subset of OK which has a Z-basis. Define ∆(M)2 := ∆(w)2 for
any Z-basis w of M .

From the previous remark, if N ⊆M , then ∆(N)2 = m2∆(M)2, so we have that ∆(M)2|∆(N)2.

Theorem 14.1.15 (Integral Basis Theorem). The ring OK has an integral basis.

Proof. Let v = {v1, . . . , vn} be any Q-basis for K. Multiplying vi by a sufficiently large number, we
can suppose v ⊆ OK .

Let M = ⟨v1, . . . , vn⟩Z. Then ∆(M)2 ̸= 0 and in Z as {v1, . . . , vn} are Q-linearly independent.
Choose the basis v such that |∆(M)2| is minimal.

We claim that M = OK , and hence that {v1, . . . , vn} is an integral basis. Suppose for a
contradiction there is some α ∈ OK such that α /∈M . Then α =

∑n
j=1 cjvj with cj ∈ Q. Then for

any j and m ∈ Z, α+mvj ∈ OK , but α+mvj /∈M . By adding suitable Z-multiples of vj to α, we
may assume |cj | ≤ 1/2. Since α /∈M , there exists j such that cj ̸= 0. Choose such j.

Let w be a new Q-basis obtained from v by replacing vj by α. We have w ⊆ OK . The change
of basis matrix

C =



1 0 · · · 0
0 1 · · · 0
...

...
c1 · · · cj · · · cn
...

...
0 0 · · · 0 1


has determinant cj . Thus

|∆(w)2| = c2j |∆(v)2| < |∆(v)2|

contradicting the minimality of |∆(v)2. Hence, such an α does not exist, giving M = OK .

Proposition 14.1.16. Let w = {w1, . . . , wn} be any Q-basis for K such that w ⊆ OK . Let
M = ⟨w1, . . . , wn⟩Z and let M ̸= OK . Then there exists a prime p such that p2| det(M)2 and
c1, . . . , cn ∈ Z not all divisible by p such that

1

p
(c1w1 + · · ·+ cnwn) ∈ OK
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Proof. Let m = [OK : M ] > 1 such that |∆(M)2| = m2|∆(OK)2|. Since m > 1, there is a prime p
dividing m, such that p2|∆(M)2. As m = #OK/M , by Cauchy’s Theorem on finite groups, OK/M
has an element of order p. Let α + M be such element. Then α =

∑
djwj with dj ∈ Q. By

construction, pα ∈M so that pdj ∈ Z. Thus, we can take α = 1/p
∑

j(pdj)wj ∈ OK .

Remark 14.1.17. The above shows a general method to find the integral basis for OK , where
[K : Q] = n.

• Let w = {w1, . . . , wn} be any Q-basis for K such that w ⊆ OK . Calculate ∆(w)2. Taking
M = ⟨w1, . . . , wn⟩Z, we know M ⊆ OK .

• If [OK :M ] = m, then we know |∆(M)2| = m2|∆(OK)2|. If ∆(M)2 is squarefree, then m = 1,
giving OK =M . Else, we can find a prime p such that p2|∆(M)2 and ci ∈ Z not all divisible
by p such that 1/p

∑
ciwi ∈ OK .

• Thus if ∆(M)2 is not squarefree, then for each prime p such that p2|∆(M)2, take α ∈ OK of
the form 1/p

∑
ciwi where p does not divide all cj and cj ∈ Z. Suppose p does not divide cj

for j = k. Multiplying through by r ∈ Z such that rck ≡ 1 mod p, we may without loss of
generality suppose that ck ≡ 1 mod p. Subtracting integer multiples of wi, we may further
suppose that 0 ≤ ci < p for all i, giving ck = 1. Replacing wk with the new α, we get another
basis, spanning a Z-module M ′. The change of basis matrix has determinant ck/p = 1/p, and
in particular ∆(M ′)2 = 1

p2
∆(M)2

• Repeating the process with M ′ instead of M , if no such α exists (this requires finite checking
as we only need to look for 0 ≤ ci < p), then p cannot divide m. Eventually we reach a basis
where none of the avaialble primes divide m such that m = 1, giving the integral basis.

Example 14.1.18. Let K = Q(
√
d) with d squarefree. Start with Q-basis {1,

√
d}. Then we clearly

have {1,
√
d} ⊆ OK and

∆({1,
√
d})2 =

∣∣∣∣1 −
√
d

1 +
√
d

∣∣∣∣2 = 4d

As d is squarefree the only prime p such that p2|∆({1,
√
d})2 is p = 2.

We have two cases,

• d ≡ 1 mod 4. We find 1
2(1 +

√
d) ∈ OK . In this case we find

∆({1, 1
2
(1 +

√
−d)})2 = 1

22
4d = d

and so we are done.

• d ̸≡ 1 mod 4. Then we see that 1
2(1 +

√
d) /∈ OK as the minimal polynomial is not in Z[x].

The other cases to check are 1
2 ,

1
2

√
d, neither are in OK . No such α was found, so 2 does not

divide the index m = [OK : ⟨1,
√
d⟩Z]. This shows {1,

√
d} is an integral basis.

Definition 14.1.19. Let K,L be fields with K ⊆ L. Let I be an ideal of OK . Then I ·OL is defined
to be the ideal of OL generated by the products of the form iℓ such that i ∈ I and ℓ ∈ OL.

Proposition 14.1.20. Given ideals I, J of OK , a principal ideal (a) = aOK of OK ,

1. (IJ) · OL = (I · OL)(J · OL)
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2. In · OL = (I · OL)n

3. (a) · OL = aOL (principal ideals are generated by the same element)

Proof. The first is simply an expansion of both sides, then double inclusion. The second follows by
induction using the first statement. The third statement is straightforward from definitions.

14.2 Cyclotomic Fields

Take the cyclotomic extension Q(µp) for a prime p. Let ζ be a primitive p-th root. Let f be the
minimal polynomial of ζ.

14.3 Class Number

Definition 14.3.1. Let I and J be non-zero ideals of OK . Then we write I ∼ J if there exist
α, β ∈ OK \ {0} such that I(α) = J(β).

Proposition 14.3.2. The relation ∼ gives an equivalence relation.

Proof. Reflexivity and symmetry are immediate. For transitivity, if we have I(α) = J(β) and
J(γ) = K(δ), we see that

I(αγ) = I(α)(γ) = J(β)(γ) = J(γ)(β) = K(δ)(β) = K(δγ)

In particular, I ∼ K.

Definition 14.3.3. The equivalence classes in OK under ∼ are called ideal classes. We write CK
to denote the set of ideal classes. The cardinality hK = |Ck| is the class number of K.

Proposition 14.3.4. We have hK = 1 if and only if OK is a PID.

Proof. (⇒) Suppose that hK = 1. Then for all proper ideals I in OK , there exists α, β ∈ OK such
that

I(α) = OK(β)

The right side is (β). As β ∈ (β), we have β = iα for some i ∈ I. Thus, β/α ∈ I. We claim that
(β/α) = I. Clearly, (β/α) ⊆ I. Given a ∈ I, we have aα ∈ I(α) = (β), so aα = rβ for some
r ∈ OK , giving a = rβ/α. Thus α ∈ (β/α) and I ⊆ (β/α).

(⇐) Suppose that OK is a PID. Then for any nonzero I ⊆ OK , there exists an α ∈ OK such
that I = (α). In particular, I(1) = OK(α), so I ∼ OK .

Lemma 14.3.5. Let I ⊆ OK be a nonzero ideal. Then I ∩ Z ̸= {0}.

Proof. Choose any nonzero α ∈ I. α is annihalated by some monic polynomial in Z[x], so write
αd + ad−1α

d−1 + · · · + a0 = 0. We can choose one such that a0 ̸= 0. In particular, a0 = −α(a1 +
· · ·+ αd−1) ∈ I ∩ Z.

Lemma 14.3.6. Let I ⊆ OK be a nonzero ideal. Then OK/I is a finite ring.

Proof. Choose any nonzero a ∈ I ∩ Z. We have (a) ⊆ I ⊆ OK . The map from OK/(a) to OK/I
that takes α+ (a) to α+ I is well-defined and onto. Thus it suffices to show that OK/(a) is finite.

Let w = {w1, . . . , wn} be an integral basis for OK . Then OK/(a) is isomorphic as an additive
group to (Z/aZ)n, where n = [K : Q]. In particular, #OK/(a) = an <∞.
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Definition 14.3.7. The norm of I is defined as N(I) := #OK/I.

Proposition 14.3.8. Let σ : K → K be an automorphism. Then I = (α1, . . . , αn) and Iσ =
(ασ1 , . . . , α

σ
n) = (σ(α1), . . . , σ(αn)) have an induced isomorphism. In particular, they have the same

norm.

Proof. The map is given by x + I → σ(x) + Iσ. This is surjective as σ is surjective, and injective
as every element of Iσ comes from I.

Proposition 14.3.9. If I = (a), then N(I) = |NormK|Q(α)|.

Proof. Let w = {w1, . . . , wn} be an integral basis for OK . Then αw is a Z basis for I = (α). By
definition,

∆(αw) = det(σi(αwj)) = det(σi(α)σi(wj)) =

(
n∏
i=1

σi(α)

)
∆(w) = NormK|Q(α)∆(w)

Now I is an additive subgroup of OK with index N(I). Thus if αwi =
∑
cijwj with cij ∈ Z, then

we have N(I) = | det(cij)| by Theorem 11.3.7.
By Lemma 12.0.5, we have ∆(αw) = det(cij)∆(w). In particular,

N(I) = |∆(αw)/∆(w)| = |NormK|Q(α)|

Lemma 14.3.10 (Hurwitz). Let K be a number field with [K : Q] = n. Then there exists a positive
integer M depending only on the choice of integral basis for OK such that for any γ ∈ K, there
exists a w ∈ OK wand 1 ≤ t ≤M , t ∈ Z iwth

|NormK|Q(tγ − w)| < 1

Proof. Let {w1, . . . , wn} be an integral basis for OK . For any γ ∈ K, write

γ =
n∑
i=1

γiwi

with γi ∈ Q. Let γi = ai + bi with ai ∈ Z and 0 ≤ bi < 1. As quick notation, write [γ] =
∑n

i=1 aiwi
and {γ} =

∑n
i=1 biwi. Thus γ = [γ] + {γ} and [γ] ∈ OK for all γ ∈ K.

Let w(1)
i , . . . , w

(n)
i be the K|Q conjugates of wi and set

C :=

n∏
j=1

(
n∑
i=1

|w(j)
i |

)

Then, if γ =
∑n

i=1 γiwi and µ := max1≤i≤n |γi|, we have

|NormK|Q(γ)| = |
n∏
j=1

(
n∑
i=1

γiw
(j)
i

)
| ≤

n∏
j=1

(
n∑
i=1

µ|w(j)
i |

)
= Cµn

Choose m to be the first integer after C1/n and let M = mn such that M only depends on the
choice of w1, . . . , wn.
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Define a linear map ϕ : K → Rn by

ϕ

(
n∑
i=1

γiwi

)
= (γ1, . . . , γn)

By construction, ϕ({γ}) lies in the n-dimensional unit cube, B := {(x1, . . . , xn) ∈ Rn | 0 ≤ xi < 1}.
Partitioning B into mn subcubes inside 1/m and consider the points ϕ({kγ}) for 0 ≤ k ≤ mn. There
are mn+1 such points inside mn subcubes, so there is some subcube with two points. Picking these
k, say h, l with h > l and taking t = h− l, we have 1 ≤ t ≤ mn =M .

By construction tγ = w + δ where w := [hγ]− [lγ] ∈ OK and δ := {hγ} − {lγ} such that

ϕ(δ) ∈ [−1/m, 1/m]n

By the inequality established previously,

|NormK|Q(δ)| ≤ C(1/m)n < 1

as m > C1/n. Now, as δ = tγ − w, the lemma follows.

Remark 14.3.11. If M = 1 in the above lemma, then we for any γ ∈ K, we can find a w ∈ OK
with |NormK|Q(γ − w)| < 1. Then, given any α, β ∈ OK , let γ = α/β. Thus, we have a w ∈ OK
such that

|NormK|Q(α/β − w)| = |NormK|Q((α− βw)/β)| < 1

In particular, by multiplicativity of the Norm, |NormK|Q(α− βw)| < |NormK|Q(β)|. Thus, we can
write α = βw+(α−βw) such that the remainder has strictly smaller Norm. Thus OK is a Euclidian
domain (hence a PID, hence class number 1).

Theorem 14.3.12. The class number hK = #Ck is finite

Proof. Let I be a nonzero ideal of OK . Choose 0 ̸= β ∈ I such that |Norm(β)| is minimal, and
let M be as in Hurwitz’s Lemma. Applying Hurwitz with γ := α/β, there is some t in the range
1 ≤ t ≤ M and w ∈ OK such that |Norm(t(α/β) − w)| < 1. By construction, tα − βw ∈ I with
|Norm(tα−βw)| < |Norm(β)|. This contradicts the minimality of |Norm(β)| unless tα−wβ = 0. In
particular, tα ∈ (β). Although t is based on α, as it lies between 1 and M , we know that M !α ∈ (β).
As α was arbitrary,

(M !)I ⊆ (β)

Now let J := {1/β ×M ! × α | α ∈ I}. Then J is an ideal in OK , using the subset equation we
established previously. Also, (β)J = (M !)I, so I ∼ J . Also by construction, OK ⊇ J ⊇ (M !). As
we know OK/(M !) is finite, there are only finitely many choices of J . Hence I is equivalent to one
of finitely many ideals, and in particular there are finitely many equivalence classes.

14.4 Unique Factorisation

Lemma 14.4.1. If I, J ⊆ OK are ideals with I nonzero with JI = I then J = OK .

Proof. Let α1, . . . , αn be a Z basis for I. As I = JI, we can find bij ∈ J such that αi =
∑n

j=1 bijαj .
Hence det(bij−δij) = 0, and expanding this determinant, every term lies in J apart from the prodct
of 1’s in the identity. Thus, 1 ∈ J , giving J = (1) = OK .

Lemma 14.4.2. If I is a nonzero ideal of OK and w ∈ K with wI ⊆ I, then w ∈ OK .
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Proof. Take M = I with Lemma 14.1.4.

Lemma 14.4.3. If I, J are nonzero ideals in OK and w ∈ OK is such that (w)I = JI, then
(w) = J .

Proof. Choose any β ∈ J . Then we have (w)I ⊇ (β)I, such that {β/w}I ⊆ I. By Lemma 14.4.2,
β/w ∈ OK , thus β ∈ (w). As β was arbitrary, we see that J ⊆ (w).

Thus w−1J is an ideal in OK . From assumption, we have I = (w−1J)I, so by Lemma 14.4.1,
w−1J = OK , giving J = (w).

Proposition 14.4.4. For any nonzero ideal I ⊆ OK , there exists a k such that 1 ≤ k ≤ hK and Ik

is principal.

Proof. Among the hK + 1 ideals {Ii | 1 ≤ i ≤ hK + 1}, some two must be equivalent. Suppose
Ii ∼ Ij with j > i. Thus (α)Ii = (β)Ij for some α, β ∈ OK . Let k = j − i and J = Ik. Then,
(α)Ii = (β)IiJ ⊆ (β)Ii such that {α/β}Ii ⊆ Ii. By Lemma 14.4.2, we have α/β ∈ OK . Also,
(α/β)Ii = JIi, so by Lemma 14.4.3, (α/β) = J . Thus J = Ik is principal.

Proposition 14.4.5. The ideal classes form a group CK . It is called the class group of K and its
order is the class number hK .

Proof. Given two ideal classes [I], [J ], define the prodct by [I] · [J ] := [IJ ]. This is clearly well-
defined. The element [Ok] acts as an identity, and associativity is derived from the ring structure
of OK . Given [I] ∈ CK , as Ik is principal for some I, [Ik−1] clearly gives an inverse.

Lemma 14.4.6 (Cancellation Lemma). Let A,B,C ⊆ OK be nonzero ideals with AB = AC. Then
B = C.

Proof. Let k be such that Ak = (α) is principal. Multiplying by Ak−1, we get (α)B = (α)C, so
B = C.

Definition 14.4.7. Let A,B ⊆ OK be nonzero ideals. Write B|A if there exists an ideal C ⊆ OK
such that A = BC.

Proposition 14.4.8. Let A,B be nonzero ideals in OK . Then B ⊇ A if and only if there exists an
ideal C such that A = BC (equivalently, B|A).

Proof. Let k ≥ 1 be such that Bk = (β) is principal. If B ⊇ A, then we have Bk−1A ⊆ Bk = (β).
Let C := {1/β}Bk−1A such that C ⊆ OK is an ideal. Then, BC = B{1/β}Bk−1A = A.

Conversely, if B|A then A = BC ′ for some C ′. Immediately, BC ′ ⊆ B as B is an ideal. Thus
A ⊆ B.

Lemma 14.4.9. Let A,B be nonzero ideals and P be a prime ideal of OK such that P |AB. Then
either P |A or P |B.

Proof. Suppose that P |AB and that P does not divide A. We have P ⊇ AB but P ̸⊇ A, so we can
find a αinA with α /∈ P . On the other hand, for any β ∈ B, we have αβ ∈ P . As P is a prime
ideal, given αβ ∈ P , one of α or β belongs to P . Thus β ∈ P . This gives P ⊇ B, thus P |B.

Remark 14.4.10. Nonzero prime ideals in OK are maximal. This follows from the fact that if P
is a nonzero prime ideal of OK , then OK/P is a finite integral domain, thus a field.
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Theorem 14.4.11 (Unique Factorisation Theorem for ideals of OK). Let A be any nonzero proper
ideal of OK . Then there exist prime ideals P1, . . . , Pr such that A = P1 · · ·Pr. The factorisation is
unique up to the order of factors.

Proof. Suppose that there is some nonzero proper ideal A that has no prime factorisation. Let A
be such an ideal with N(A) minimal. There exists a maximal (thus prime) ideal P1 containing A.
In particular, we can find an ideal C with A = P1C.

If A = C, then P1C = C, which gives P1 = OK , a contradiction. Thus A ⊊ C. By the definition
of Norm, we have N(A) = N(C)[C : A] > N(C). By the minimality assumption, we can factor
C into prime ideals C = P2 · · ·Pr (or trivially if C = OK). Then, A = P1 · · ·Pr, a contradiction.
Hence every nonzero proper ideal has a prime factorisation.

Suppose now that A = P1 · · ·Pr = Q1 · · ·Qs. We know that P1|Q1 · · ·Qs. Take k minimal
such that P1|Q1 · · ·Qk. If k = 1, P1|Q1, and if k > 1, P1|(Q1 · · ·Qk−1)Qk, but P1 does not divide
(Q1 · · ·Qk−1), thus P1|Qk. We therefore have P1|Qk. As Qk is maximal, P1 = Qk. Without loss of
generality, take k = 1, and inductively repeat by applying the Cancellation Lemma.

In the end we getOK = Q′
1 · · ·Q′

t unless r = s, but only one side clearly contains the identity.

Remark 14.4.12. Prime ideals that appear in A are those which contain A. We don’t have to
worry about associates as for any unit u, (u)I = I. If OK is a PID, this is a direct proof that it is
a UFD.

Remark 14.4.13. Note that ideals A,B in OK are coprime if and only if there is no shared maximal
ideal P . In other words, they have no prime factor in common.

By observing the factorisation and applying the cancellation lemma, if A,B are coprime, we
have

• A|BC, then A|C

• A|I and B|I implies AB|I

Lemma 14.4.14. If A and B are coprime, then AB = A ∩B.

Proof. Clearly, AB ⊆ A ∩ B, thus A ∩ B|AB. On the other hand, A|A ∩ B and B|A ∩ B, by
coprimality and unique factorisation, we have AB|A ∩B.

Lemma 14.4.15. If A,B are nonzero coprime ideals, then N(AB) = N(A)N(B).

Proof. By the Chinese Remainder Theorem, we have

OK/(A ∩B) ≃ OK/A⊕OK/B

when A,B are coprime. By the previous lemma, we have A ∩ B = AB. By considering the
cardinality on both sides, the proof follows.

Lemma 14.4.16. If P is a nonzero prime ideal of OK and i ≥ 0, #P i/P i+1 = #OK/P .

Proof. We have P i+1 ⊆ P i, but by the Cancellation Lemma, cannot have equality. Thus we can
choose a π ∈ P i such that π /∈ P i+1. Then, P i ⊇ (π). Let (π) = P iB, then we have that P does
not divide B.

Define a homomorphism on additive groups by

θ : OK → P i/P i+1

α 7→ ᾱπ
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by the map which multiplies α by π then reduces modulo P i+1. Now we also have

θ(α) = 0 ⇐⇒ απ ∈ P i+1 ⇐⇒ (απ) ⊆ P i+1 ⇐⇒ (α)P iB ⊆ P i+1

⇐⇒ P i+1|(α)P iB ⇐⇒ P |B(α) ⇐⇒ P |(α)

Thus, ker(θ) = P .
Thus by the first isomorphism theorem, it suffices to show that θ is surjective. Now

(π) + P i+1 = P iB + P i+1 = P i

as B+P = OK . Thus, given any β+P i+1 ∈ P i/P i+1, there exists α ∈ OK and γ ∈ P i+1 such that
απ + γ = β. Then θ(α) = β + P i+1.

Corollary 14.4.17. If P is a nonzero prime ideal and e ≥ 1, then N(P e) = N(P )e.

Proof. Taking OK and P i as additive groups, we have

N(P e) = #OK/P e = #OK/P ·#P/P 2 · · ·#P e−1/P e = (#OK/P )e = N(P )e

where the second equality comes from the third isomorphism theorem used telecopically (or noting
that 0→ P i−1/P i → OK/P i → OK/P i−1 → 0 is a short exact sequence).

Corollary 14.4.18. If A =
∏
i P

ei
i , then N(A) =

∏
N(Pi)

ei , where Pi are distinct nonzero prime
ideals

Proof. Using the proof above and Lemma 14.4.15.

Corollary 14.4.19. If A,B are nonzero ideals, then N(AB) = N(A)N(B)

Proof. A consequence of Unique Factorisation and the previous corollary.

Remark 14.4.20. If N(I) = p for a rational prime, then I is automatically prime as OK/I is a
finite ring with p elements. Alternatively, consider the factorisation of I and note that any nontrivial
prime ideal has norm at least 2.

On the other hand, if P is prime, it is maximal, thus OK/P is a finite field with pk elements for
some prime p and integer k.

Alternatively, let K be a number field of degree [K : Q] = n. Let P be a nonzero prime ideal
of OK . Then P ∩ Z is a prime ideal of Z, so it is of the form pZ for some rational p. Thus
P ⊇ pOK = (p). We say that P lies above p. Suppose that

(p) = P e11 · · ·P
er
r

where Pi are distict prime ideals in OK . Then they are all prime ideals lying above the rational
prime p. Taking norms,

pn = N(P1)
e1 · · ·N(Pr)

er

such that N(Pi) = pfi with
∑r

i=1 eifi = n. As P must be one of the Pi, we see that N(P ) is a
power of p.

Definition 14.4.21. The integer ei is called the ramification index of Pi. If ei > 1, we say that
Pi is ramified. If some ei > 1, we say that p ramifies in K. The integer fi is called the degree of
Pi.
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Note here that pfi = #OK/Pi and that OK/Pi is isomorphic to the finite field with pfi elements.

Example 14.4.22. Considering Z[
√
−5], we have

(6) = (2)(3) = (1−
√
−5)(1 +

√
−5)

Let P1 = (2, 1 +
√
−5), P2 = (2, 1−

√
−5), Q1 = (3, 1 +

√
−5), Q2 = (3, 1−

√
−5). Now,

(2) = (4, 6) ⊆ P1P2 ⊆ (2, 6) = (2)

Thus P1P2 = (2). We have N((2)) = Norm(2) = 4, thus N(P1)N(P2) = 4. Also, a ≡ b mod 2 when
a+ b

√
−5 ∈ Pi, giving Pi ̸= OK . Thus N(P1) = N(P2) = 2.

By similar calculation, we have (3) = (9, 6) ⊆ Q1Q2 ⊆ (3, 6) = (3), such that Q1Q2 = (3), with
N(Q1) = N(Q2) = 3. As these are prime, we see that P1, P2, Q1, Q2 are prime ideals.

Now, P1, Q1 ⊇ (1 +
√
−5) and P2, Q2 ⊇ (1−

√
−5), so contains once of each, comparing norms

gives P1Q1 = (1 +
√
−5) and P2Q2 = (1−

√
−5).

Thus,
(2)(3) = (1 +

√
−5)(1−

√
−5) = P1P2Q1Q2 = P1Q1P2Q2

giving unique factorisation, although the factorisation into irreducibles are different.

Theorem 14.4.23 (Dedekind). Suppose that K = Q(α) with α ∈ OK with a minimal polynomial
m(x) ∈ Z[x] with degree n. If p does not divide [OK : Z[α]] and m̄(x) := m(x) mod p ∈ Fp[x]
factorises as

m̄(x) =
r∏
i=1

ḡi(x)
ei

with ḡi distict and irreducible, then

• Pi = (p, gi(α)) is a prime ideal of OK (where gi(x) is any polynomial such that gi(x) ≡
ḡi(x) mod p)

• Pi are distinct

• The degree of Pi is the degree of ḡi

• (p) =
∏r
i=1 P

ei
i

Proof. Suppose that p does not divide the index [OK : Z[α]]. Consider the natural map Z[α] →
OK/pOK . An element γ of the kernel must have the form pβ for β ∈ OK . As p does not divide
the index [OK : Z[α]], we must have β ∈ Z[α]. Thus the kernel is precisely pZ[α], which induces an
injection Z[α] ↪→ OK/pOK . This must be an isomorphism of rings as both sides have order pn.

Now consider the ring homomorphism from Z[x] to Z[α]/pZ[α] taking g(x) to g(α) + pZ[α].
This has kernel

{g(x) | g(x) = m(x)h(x) + pj(x)} = (p,m(x))

giving
Z[α]/pZ[α] ≃ Z[x]/(p,m(x))

Finally, consider the homomorphism from Z[x] to Fp[x]/(m̄(x)) sending g(x) to ḡ(x)+ (m̄(x)). The
kernel of this map is

{g(x) | m̄(x)|ḡ(x)} = {g(x) = m(x)h(x) + pj(x)} = (p,m(x))

90



Thus Z[x]/(p,m(x)) ≃ Fp[x]/(m̄(x)), and composing maps, we get

OK/pOK ≃ Z[α]/pZ[α] ≃ Z[x]/(p,m(x)) ≃ Fp[x]/(m̄(x))

There is a bijective correspondence between prime ideals of OK containing (p) and the prime ideals
of OK/pOK , and these have a correspondence to prime ideals of Fp[x]/(m̄(x)). However, these
prime ideals are generated by irreducible factors ḡi(x) of m̄(x). Tracing back with correspondence,
these correspond to Pi = (p, gi(α)) in OK . This shows (i) and (ii). Also, the isomorphism shows
N(Pi) = #Fp[x]/(ḡi(x)), which shows (iii).

Finally, we have

r∏
i=1

P eii =

r∏
i=1

(p, gi(α))
ei ⊆

r∏
i=1

(p, gi(α)
ei) ⊆ (p,

r∏
i=1

gi(α)
ei) = (p)

On the other hand, pfi = N(Pi) = pdeg(gi), such that

N

(
r∏
i=1

P eii

)
= p

∑r
i=1 eifi = p

∑r
i=1 ei deg(gi) = pn

On the other hand, N((p)) = pn, so (p) =
∏r
i=1 P

ei
i .

Corollary 14.4.24. If p ramifies, then p|∆(Z[α])2.

Proof. Note that if p|[OK : Z[α]], then p|∆(Z[α])2, so we may suppose that p does not divide
[OK : Z[α]]. Then by Dedekind, if p ramifies with a factor P 2, then m̄(x) has a multiple irreducibl
factor ḡ(x) over Fp, for which g(α) ∈ (p, g(α)) = P . We then have that m(x) = g(x)2h(x) + pk(x)
such that

m′(x) = g(x)(2g′(x)h(x) + g(x)h′(x)) + pk′(x) = g(x)j(x) + pl(x)

say. Thus m′(α) = g(α)j(α) + pβ with β ∈ OK . It follows that

NormK|Q(m
′(α)) =

∏
σ

σ(m′(α)) =
∏
σ

σ(g(α)j(α)) + pγ

for some algebraic integer γ. In particular,

NormK|Q(m
′(α)) = NormK|Q(g(α))NormK|Q(j(α)) + pγ

and as P |(g(α)), we have p|NormK|Q(g(α)). Now this also gives that γ ∈ Z. Thus
p|NormK|Q(m

′(α)), and now the result follows as ∆2(Z[α]) = ±NormK|Q(m
′(α)).

Example 14.4.25. Let K = Q(
√
−5) such that OK = Z[

√
−5] and ∆(Z[

√
−5])2 = 4(−5) = −20.

The possible ramified primes are 2 and 5. We have m(x) = x2 + 5 and

• x2 + 5 ≡ (x+ 1)2 mod 2, such that (2) = (2,
√
−5 + 1)2

• x2 + 5 ≡ x2 mod 5, such that (5,
√
−5)2 = (

√
−5)2.

For all primes we have
∑r

i=1 eifi = 2, so r ≤ 2. Thus either r = 1, e1 = 2, f1 = 1 (ramified case),
r = 1, e1 = 1, f1 = 2 (inert case),r = 2, e1 = e2 = 1, f1 = f2 = 1 (splitting case). We extend this
notion to general algebraic number fields, saying that p is inert if (p) is prime in OK , and that p
splits otherwise.

We have considered p = 2, 5, so consider p ̸= 2, 5.
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•
(
−5
p = −1

)
. Then x2 + 5 is irreducible modulo p, and

(p) = P := (p,
√
−52 + 5) = (p)

is inert.

•
(
−5
p = 1

)
, then x2 + 5 ≡ (x − a)(x + a) mod p, where a ̸≡ −a mod p. Thus, (p) = P1P2,

where P1 = (p,
√
−5− a) and P2 = (p,

√
−5 + a).

14.5 Computation of the Class Group

Definition 14.5.1. Let {v1, . . . , vn} be any basis for Rn. Let L = {
∑n

i=1 aivi | ai ∈ Z} be the lattice
generated by vi. This is an additive subgroup of Rn. Let D = {

∑n
i=1 aivi | ai ∈ [0, 1)}. We call D

the fundamental domain for L.

Note that any v ∈ Rn can be expressed uniquely as v = u+ w with u ∈ L and w ∈ D.

Definition 14.5.2. If vi =
∑n

j=1 aijej where {e1, . . . , en} is the standard basis for Rn, we define

Vol(D) := | det(aij)|

we also sometimes denote this Vol(L).

Note that Vol(D)2 = det(vi · vj), being the determinant of the matrix (aij)(aij)
T . Vol(D) is

independent of the choice of Z-basis for L, as the change of basis for this is a unitary matrix with
determinant ±1.

Lemma 14.5.3 (Blichfeldt). Let L be a lattice in Rn, and let S be a bounded measurable subset of
Rn such that Vol(S) > Vol(L). Then there exist x, y ∈ S with x ̸= y such that x− y ∈ L.

Proof. OoSN. Lemma 8.1 of ANT. Slight measure theory bits.

Definition 14.5.4. We say that S ⊆ Rn is convex if

x, y ∈ S, 0 ≤ λ < 1 =⇒ λx+ (1− λ)y ∈ S

We say that S is symmetric (about the origin), if

x ∈ S =⇒ −x ∈ S

Theorem 14.5.5 (Minkowski’s Convex Body Theorem). Let L be a lattice in Rn. Let S be a
bounded measurable subset of Rn which is convex and symmetric. If Vol(S) > 2nVol(L) then there
exists v ∈ L− {0} with v ∈ S.

Proof. OoSN. Theorem 8.3 of ANT. Need to clear what ‘measurable’ is first...

Remark 14.5.6. If S is closed (thus compact), it is enough to have Vol(S) ≥ 2nVol(L).

Example 14.5.7. If p ≡ 1 mod 4, then there exists x, y ∈ Z such that p = x2 + y2. We first note
from (−1

p ) = 1 that there is an s with s2 ≡ −1 mod p. If p = x2 + y2, then this equals 0 mod p, so
(x/y)2 ≡ −1 mod p. In particular, x ≡ ±sy mod p. Note,

x ≡ sy mod p ⇐⇒ x = sy + pz with z ∈ Z ⇐⇒ (x, y) = y(s, 1) + z(p, 0)
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In particular, {(s, 1), (p, 0)} is a basis for L (solutions) in R2 with

Vol(L) =

∣∣∣∣det(s p
1 0

)∣∣∣∣ = p

Let C be the disc x2 + y2 < 2p with radius
√
2p. C is convex and symmetric about the origin, and

we also have
Vol(C) = π(

√
2p)2 = 2πp > 22p = 22Vol(L)

Thus, by Minkowski’s Theorem, there exists a nonzero v ∈ L such that v ∈ C. Suppose that
v = (x, y). As v ∈ L we have x ≡ sy mod p, thus x2 + y2 ≡ 0 mod p. On the other hand, v ∈ C
implies that x2 + y2 < 2p, so we have x2 + y2 = 0 or p. As v is nonzero, this gives a solution
x2 + y2 = p.

Definition 14.5.8. Let [K : Q] := n = r+2s where r is the number of real embeddings σ1, . . . , σr :
K → R and s is the number of pairs of complex embeddings σr+1, . . . , σr+s, σ̄r+1, . . . , σ̄r+s : K → C.

Let σ : K → Rr × Cs ≃ Rn defined as

σ(x) := (σ1(x), . . . , σr(x),R(σr+1(x)), I(σr+1(x)), . . . ,R(σr+s(x)), I(σr+s(x)))

Now let OK be the ring of integers of K and let {v1, . . . , vn} be an integral basis for OK . Write
A for the matrix whose ith row is σ(vi). By elementary column operations,

(−2i)s det(A) = det(σj(vi)) = ±
√
|∆2(K)| ≠ 0

where the (−2i) factor comes from the change of basis matrix from (R(z), I(z)) to (z, z̄). In
particular det(A) ̸= 0 and σ(OK) is a lattice in Rn with volume

√
|∆2(K)|/2s.

If I is an ideal of OK with basis w = {w1, . . . , wn}, then wi =
∑

j cijvj , and

N(I) = [OK : I] = det(cij)

by Theorem 11.3.7. Also, by Lemma 12.0.5, we have ∆2(w) = det2(cij)∆
2(v), so ∆2(w) =

N(I)2∆2(v), giving

Vol(σ(I)) =

√
|∆2(w)|
2s

=
N(I)

√
|∆2(v)|2
2s

Lemma 14.5.9. For t > 0, let

Rt := {(x1, . . . , xr, z1, . . . , zs) ∈ Rr × Cs} |
r∑
i=1

|xi|+ 2

s∑
i=1

|zi| ≤ t

Then

• Rt is a compact, symmetric, and covnex subset of Rn

• Vol(Rt) = 2rtn(π/2)s/n!

Proof. OoSN. See Lang, ANT, page 116.

Theorem 14.5.10. Let I ⊆ OK be a nonzero ideal. Then there exists a nonzero α ∈ I with

|NormK|Q(α)| ≤ cK(N(I))

where
cK :=

(
4

π

)s n!
nn

√
|∆2(K)|

is the Minkowski’s constant for K.
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Proof. Choose t ∈ R such that πstn/n! = 4s
√
|∆2(K)|N(I). Then,

Vol(Rt) =
2rtn(π/2)s

n!
=

2n
√
|∆2(K)|N(I)

2s
= 2nVol(σ(I))

By Minkowski’s Theorem, there exists a nonzero α ∈ I such that σ(α) ∈ Rt. In particular,

r∑
i=1

|σi(α)|+ 2
s∑

i=r+1

√
R(σi(α)2) + I(σi(α))2 ≤ t

In particular,
∑n

i=1 |σi(α)| ≤ t, so by AM-GM inequality we get(
n∏
i=1

|σi(α)|

) 1
n

≤ 1

n

(
n∑
i=1

|σi(α)|

)
≤ t

n

giving |NormK|Q(α)| ≤
(
t
n

)n
= cK(N(I)).

Theorem 14.5.11. Any class ideal c ∈ CK contains an ideal J such that N(J) ≤ cK , that is

N(J) ≤
(
4

π

)s n!
nn

√
|∆2(K)|

Proof. Let I be any ideal in the inverse class c−1. As we know there exists a nonzero α ∈ I such
that |NormK|Q(α)| ≤ cKN(I). As (α) ⊆ I, we have I|(α), we have an ideal J such that IJ = (α).
Thus [J ] = c and J ∈ c. Taking Norms,

N(I)N(J) = N(IJ) = |NormK|Q(α)| ≤ cKN(I)

giving N(J) ≤ cK .

Remark 14.5.12. For a nonzero ideal J ⊆ OK , we have N(J) = #OK/J so that N(J)(x+J) ∈ J
for any x ∈ OK by Langrange’s Theorem, viewning OK/J as an additive group. Taking x = 1, we
see that N(J) ∈ J . Thus J ⊇ (N(J)) and that J |(N(J)). Thus, every class c contains an ideal J
such that J has an element m ∈ J ∩ N with m ≤ cK (m = N(J)).

Corollary 14.5.13. If K ̸= Q, then |∆2(K)| > 1

Proof. As N(J) ≥ 1 for any ideal J ⊆ OK , we have

1 ≤
(
4

π

)s n!
nn

√
|∆2(K)| ≤

(
4

π

)n n!
nn

√
|∆2(K)|

Define bn :=
(
4
π

)s n!
nn . It suffices to show that bn > 1 for all n ≥ 2. Now,

bn+1

bn
=
π

4

(
1 +

1

n

)n
=
π

4

(
1 + n

1

n
+ · · ·

)
≥ π

2
> 1

Thus bn > 1 for all n ≥ 2.
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Let c be any ideal class. Then there exists some J ∈ c such that N(J) ≤ cK . Writing J as a
product of prime ideals, we have J = P1 . . . Ps. By multiplicativity of the norm, we have N(Pi) ≤ cK
for each i. Moreover, as c = [J ] = [P1 . . . Ps] = [P1] . . . [Ps], c is in the group generated by ideal
classes of prime ideals of norm at most cK . Thus the class group itself is generated by classes of
prime ideals in OK of norm at most cK .

To find a suitable set of generators, note that prime ideals of norm at most cK are factors of
ideals (p) where p ≤ cK . By Dedekind, p factorises into prime ideals to get a complete set of
generators.

To determine the class group, it remains to find any relations satisfied by the classes of these
prime ideals. Relations can be obtained by the prime fcatorisation of ideals (p), noting (p) is
principal, and others can be obtained by factoring principal ideals (α) generated by elements α ∈ OK
of smaller norm.

To then show that these relations is complete, one needs to show that appropriate combinations
of these generators are not principal. For complex quadratic fields, we can see that I is non-principal
by checking all α ∈ OK such that NormK|Q(α) = N(I) and checking whether I = (α). If K is
complex quadratic there are only finitely many possible α to check (by explicitly considering the
norm).

Example 14.5.14. Let K = Q(
√
−5) such that OK = Z[

√
−5]. As OK is not a PID (as it is not

a UFD), so hK > 1. Also, n = 2, s = 1, r = 0, and ∆2(K) = −20, so

cK =
2!

22

(
4

π

)√
20 =

4
√
5

π
< 3

Thus every ideal class contains an ideal of norm at most 2, and that CK is generated by classes of
prime ideals of norm at most 2.

Now, (2) = P 2
2 , where P2 = (2, 1 +

√
−5), with N(P2) = 2, so [P2] generates CK . Now as

[P2]
2 = [(2)] = [OK ], Ck is cyclic of order 2 and thus hK = 2.

Example 14.5.15. Taking K = Q(
√
−6) for OK = Z[

√
−6] with n = 2, r = 0, s = 1 and

∆2(K) = −24, we have

cK =
2!

22

(
4

π

)√
24 =

4
√
6

π
≈ 3.1

The ideal class group CK is generated by classes of prime ideals P such that N(P ) ≤ cK , meaning
that N(P ) = 2 or 3.

By Dedekind, (2) = P 2
2 where P2 := (2,

√
−6) and (3) = P 2

3 with P3 = (3,
√
−6). We have

N(P2) = 2 and N(P3) = 3. Thus CK is generated by [P2] and [P3]. Neither of these are principal
as no (x+ y

√
−6) can have norm 2 or 3. Now,

√
−6 =

√
−6 · 3 + 2 ·

√
−6 ∈ P2P3

And NormK|Q(
√
−6) = 6, giving (

√
−6) = P2P3. It follows that [P2][P3] = [OK ], again showing

that CK must be cyclic of order 2, generated by [P2] and hK = 2.

Example 14.5.16. We find all integer solutions of the equation y2 + 54 = x3. Let x, y ∈ Z
be a solution. If y is even, x3 ≡ 2 mod 4, which is impossible. If 3|y, then 3|x, and setting
x = 3x1, y = 3y1, we get y21 + 6 = 3x31. Thus 3|y1, and writing y1 = 3y2, we get 3y22 + 2 = x31.
However, 3y22 + 2 ≡ 2 or 5 mod 9, whereas x31 ≡ 0, 1 or 8 mod 9. This contradiction shows y is
coprime to 3.
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In particular, gcd(y, 6) = 1, and thus gcd(x, 6) = 1. We now use the ideal factorization (y +
3
√
−6)(y − 3

√
−6) = (x)3. We claim the factors on the left are coprime. If a prime ideal divides

both factors, then 6
√
−6 = {y + 3

√
−6} − {y − 3

√
−6} ∈ P , so P |(6

√
−6) = P 3

2P
3
3 . Thus P is

either P2 or P3. On the other hand, as P |(y + 3
√
−6) implies that P |(x)3, taking norms gives

N(P )|x6, which is impossible as gcd(x, 6) = 1. Thus these are coprime ideals of OK , and by unique
factorisation of ideals, we have

(y + 3
√
−6) = I3

for some ideal I. As I3 is principal we know [I3] = [OK ], and as hK = 2, [I]2 = [OK ] (by Langrange),
giving [I] = [OK ]. As I is principal, we have I = (α) for some α ∈ OK .

It follows that (y + 3
√
−6) = (α)3 = (α)3, giving y + 3

√
−6 = uα3 for some unit u. Units in

OK are ±1, so for both of these we have u = u3. Thus,

y + 3
√
−6 = {uα}3 = {a+ b

√
−6}3

by equating coefficients and solving gives 3 = b(3a2 − 6b2) thus 1 = b(a2 − 2b2). Thus b = −1 and
a2 = 1, giving y = a3 − 18b2a = a(a2 − 18b2) = ±17. With these y the only possible x is 7, giving
solutions x = 7, y = ±17.

Example 14.5.17. Let K = Q(
√
−163) such that OK = Z(12(1 +

√
−163)). Then,

cK =
2

π

√
163 ≈ 8.13 < 9

Thus the class group CK is generated by classes of prime ideals dividing (2), (3), (5), (7). Note that
the minimal polynomial of the generator is x2 − x + 41. Modulo 2, this is x2 + x + 1, which is
irreducible. In particular, the only prime above 2 is (2), which is principal (we are using the fact
OK ≃ Z[x]/(x2 − x + 41) and the third isomorphism here). For p = 3, 5, 7, we use Dedekind and
note that all polynomials x2 + 163 mod p is irreducible thus (p) is inert. Thus the only relevant
prime ideals are principal. In particular, CK is trivial and hK = 1. Thus OK is a UFD.

Example 14.5.18. The fact hK = 1 for K = Q(
√
−163) implies that n2 + n + 41 is prime for

0 ≤ n ≤ 39.
Suppose for a contradiction that n2+n+41 is not prime for some n < 40. Now n2+n+41 < 412

and so n2 + n+ 41 must have a prime factor q < 41.
Now,

q|n2 + n+ 41 =

{
n+

1

2
(1 +

√
−163)

}{
n+

1

2
(1−

√
−163)

}
However q does not divide either factor in OK and so q cannot be prime in OK . As we are in a
UFD, it follows that q cannot be irreducible. Thus q = αβ where NormK|Q(α) = NormK|Q(β) = q.
If

α = x+ y
1 +
√
−163
2

then
q = NormK|Q(α) =

(
x+

y

2

)2
+ 163

(y
2

)2
As q is not square we have y ̸= 0, giving q ≥ 163/4 > 40, which gives a contradiction.

Remark 14.5.19. With similar logic,

• n2 + n+ 17 is prime for 0 ≤ n ≤ 15 with Q(
√
−67).
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• n2 + n+ 11 is prime for 0 ≤ n ≤ 9 with Q(
√
−43)

• n2 + n+ 5 is prime for 0 ≤ n ≤ 3 with Q(
√
−19)

• n2 + n+ 3 is prime for 0 ≤ n ≤ 1 with Q(
√
−11)

Example 14.5.20. Taking K = Q(
√
−29), we have OK = Z[

√
−29] and ∆2(K) = −116. We have

n = 2 and s = 1, so

cK =

(
2

π

)√
116 ≈ 6.9 < 7

CK is thus generated by classes of prime ideals dividing (2), (3) and (5). To factor these, by
Dedekind,

• x2 + 29 ≡ (x+ 1)2 mod 2, so (2) = P 2
2 where P2 := (2,

√
−29 + 1) of norm 2.

• x2 + 29 ≡ x2 − 1 ≡ (x + 1)(x − 1) mod 3, so (3) = P3P
′
3, where P3 := (3,

√
−29 + 1) and

P ′
3 := (3,

√
−29− 1) are distinct prime ideals of norm 3.

• x2 + 29 ≡ x2 − 1 ≡ (x + 1)(x − 1) mod 5, so (5) = P5P
′
5 with P5 := (5,

√
29 + 1) and

P ′
5 := (5,

√
29− 1) are distinct prime ideals of norm 5.

In particular, [P ]2 = [P3][P
′
3] = [P5][P

′
5] = [OK ]. Thus CK is generated by [P2], [P3], [P5]. Con-

sidering NormK|Q(x + y
√
−29) = x2 + 29y2, there are no elements in OK with norms ±2,±3,±5,

meaning P2, P3, P5 are not principal, and [P2] must have order 2.
The only element α ∈ OK of norm ±9 is ±3. Thus if P 2

3 = (α), then we have P 2
3 = (3) = P3P

′
3,

which implies P3 = P ′
3, a contradiction. Thus the order of [P3] is at least 3. We also cannot have

order 3 as there are no solutions to x2 + 29y2 = ±27.
Considering [P5], note that 32+29×22 = 125, so that N(3+2(

√
−29)) = 53. Thus, (3+2

√
−29)

must be one of P 3
5 , P

2
5P

′
5, P5P

′2
5 , P

′3
5 . However, 2 + 2

√
−29 ∈ P5, giving 3 + 2

√
−29 /∈ P5. Thus P5

does not divide this, giving (3 + 2
√
−29) = P ′3

5 , and taking conjugates shows (3 − 2
√
−29) = P 2

5 .
Thus [P5] has order dividing 3. As P5 is not principal, the order of P5 is exactly 3.

Finally,
(30) = (2)(3)(5) = (1 +

√
−29)(1−

√
−29)

And from (2)(3)(5) = P 2
2P3P

′
3P5P

′
5, we can deduce that (1±

√
−29) must be of the form P2P

∗
3P

∗
5 ,

and in either case, [P3] is in the group generated by [P2] and [P5]. Thus, CK is an abelian group
generated by an element of order 2 and an element order 3. This gives a cyclic group of order 6.
We can use the arguemtn above to explicitly find that (2 + 5

√
−29) = P 6

3 and (2− 5
√
−29) = P ′6

3 .

Example 14.5.21. Let K = Q(
√
−37). Given that hK = 2, we show that there are no integral

solutions of the equation y2 = x3 + 37.
Suppose that x, y ∈ Z such that y2 + 37 = x3. Then as ideals we have

(y +
√
−37)(y −

√
−37) = (x)3

We claim these two are coprime ideals. Suppose that a prime ideal P divides both. Then y±
√
−37 ∈

P , so that the difference 2
√
−37 ∈ P . Thus P |(2

√
−37) and since P is prime we conclude that

P |(2) or P |(
√
−37). As OK = Z[

√
−37], we factor (2) and (37) using the decomposition of x2 + 37

modulo p. We have

• x2 + 37 ≡ (x+ 1)2 mod 2, giving (2) = P 2
2 where P2 := (2, 1 +

√
−37)
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• x2 + 37 ≡ x2 mod 37, so (37) = (37,
√
−37)2 = P 2

37, where P37 := (
√
−37) is a prime of norm

37.

It follows that if P is a common factor of (y +
√
−37) and (y −

√
−37), then P = P2 or P = P37.

In either case, as P |(y +
√
−37), we have P |(x)3, taking norms we get 2|x6 or 37|x6 respectively.

Thus either 2|x or 37|x.
If 37|x, then from our original equation we have 37|y. Thus 372 divides x3 − y2 = 37, a

contradiction. If 2|x, we have 8|x3, but then y2 + 1 ≡ 0 mod 4, a contradiction.
Thus (y+

√
−37) and (y−

√
−37) are coprime ideals. Their products is a cube, thus by unique

factorisation of ideals we have
(y +

√
−37) = I3

for some ideal I. As I3 is principal, the order of [I] in CK divides 3. As hK = 2, I must be principal.
Thus,

(y +
√
−37) = (a+ b

√
−37)3

for some a, b ∈ Z. In particular, y+
√
−37 = u(a+b

√
−37)3 for some unit u ∈ OK . As the only such

units are ±1, we have u = u3, so we may replacing a, b by −a,−b if appropriate, we may assume
that u = 1. Expanding, we get y = a(a2 − 111b2) and 1 = b(3a2 − 37b2). The second equation
implies that b = ±1 and 3a2 − 37 = ±1. No such a exists.

14.6 Fermat’s Theorems

Definition 14.6.1. Let p be prime and m ∈ Z. m is a quadratic residue mod p if there exists a
x ∈ Z such that m ≡ x2 (mod p). Otherwise, m is a quadratic non-residue mod p.

Lemma 14.6.2. For any prime p ̸= 2, define ψ : Z∗
p → Z∗

p by x 7→ x2. This is a 2-to-1 map.
In particular, exactly half of {1, . . . , p − 1} are quadratic residues mod p, and half are quadratic
non-residues mod p.

Proof. Follows by observing the kernel and also noting that ψ(x) = ψ(p− x).

Definition 14.6.3. For a prime p and p ̸ |m, define the Legendre symbol by(
m

p

)
=

{
1 if m is a quadratic residue mod p
−1 otherwise

When p|m, define
(
m
p

)
= 0.

Lemma 14.6.4. Let p be an odd prime and p ̸ |m,n,m1,m2. Then,

• If m1 ≡ m2 mod p, then
(
m1
p

)
=
(
m2
p

)
•
(
mn
p

)
=
(
m
p

)(
n
p

)
•
(
−1
p

)
= 1 ⇐⇒ p ≡ (mod 4) or p = 2.

(
−1
p

)
= −1 ⇐⇒ p ≡ 3 (mod 4).

•
(
2
p

)
= 1 ⇐⇒ p ≡ ±1 (mod 8).

(
2
p

)
= −1 ⇐⇒ p ≡ ±3 (mod 8).

Theorem 14.6.5 (Gauss’s Law of Quadratic Reciprocity). Let p ̸= 2, q ̸= 2 be distinct primes. If
either p ≡ 1 or q ≡ 1 mod 4, then

(
p
q

)
=
(
q
p

)
. If both p ≡ 3 and q ≡ 3 mod 4, then

(
p
q

)
= −

(
q
p

)
.
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Theorem 14.6.6. If p is prime and p ≡ 1 mod 4, then there exists a, b ∈ Z such that p = a2 + b2

and this decomposition is unique.

Proof. Assume that p ≡ 1 mod 4. Then we have (frac−1p) = 1, so there exists some r ∈ Z such
that p|1+r2. Extending to Z[i], we have p|(1+ri)(1−ri). If p is irreducible in Z[i], then p|(1+ri) or
p|(1− ri), as any irreducible is prime. However, p cannot divide 1+ ri for example, as 1

p +
r
p i /∈ OK .

Thus we can write p = (a+ bi)(c+ di) neither units. Taking norms,

p2 = (a2 + b2)(c2 + d2)

As Z is a UFD and neither a + bi or c + di has norm ±1, we have p = a2 + b2 = (a + bi)(a − bi).
This shows existence. If a+ bi = αβ ∈ Z[i], taking norms gives

p = Norm(α)Norm(β)

Thus α or β must be a unit. Hence a + bi is irreducible in Z[i] and similarly for a − bi. Hence
p = (a+bi)(a−bi) is the unique factorisation of p into irreducibles. If p = e2+f2 = (e+fi)(e−fi),
then e+ fi is an associate of a+ bi or a− bi, and in any case {a2, b2} = {e2, f2}.

Theorem 14.6.7. The only integer solutions of y2 + 2 = x3 are x = 3, y = ±5

Proof. If y were even then x is also even, giving 8|y2 + 2 which is impossible since 4|y2. Thus y is
odd. We can decompose (y+

√
−2)(y−

√
−2) = x3. Suppose that there is an irreducible element α

which divides both y+
√
−2 and y−

√
−2. Then α divides the difference 2

√
−2 =

√
−23. However,√

−2 is irreducible since its norm is 2, which is prime in Z. Hence we must have α = ±
√
−2. Now,

α|y +
√
−2 =⇒

√
−2|y =⇒ 2|y2

which is a contradiction as y is odd. Hence y+
√
−2 and y−

√
−2 are coprime. Unique factorisation

of Z[
√
−2] implies that y +

√
−2 and y −

√
−2 are associates of cubes. As the only units are ±1.

they are indeed both cubes. Now,

y +
√
−2 = (a+ b

√
−2)3

solving gives (a3 − 6ab2) + (3a2b − 2b3)
√
−2. Thus b(3a2 − 2b2) = 1. Giving b = ±1 and a = ±1.

Substituting these combinations, we get y = ±5, thus x = 3.

15 Notes

In Lemma 12.0.5, we note the transpose is due to the fact that we order elements in the det on
elements to be placed by row, whereas the change of basis works column-wise.

characteristic 0, separable -> min poly irreducible has no repeated roots -> has degree many
embeddings

The Z basis for OK generates K as a Q basis, as for any algebraic α, there is some nα ∈ OK .
Ideals inside Ok are generated by n elements as they are submodules of Zn

If OK has integral basis w1, . . . , wn, then we can view

OK ≃
n⊕
i=1

Zwi
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as an isomorphism of abelian groups. Also, n := [K : Q]. Given any principal ideal (a) in OK , we
have

(a) = aOK ≃
n⊕
i=1

aZwi

because aw1, . . . , awn is an integral basis for (a). In particular,

OK/(a) ≃
n⊕
i=1

Zwi/
n⊕
i=1

aZwi =
n⊕
i=1

(Z/aZ)wi ≃ (Z/aZ)n

Remark 15.0.1. Note first that every ideal in OK can be written with at most 2 generators. (Proof.
prime ideals height c over a noetherian ring can be generated by c elements, and the height of any
maximal ideal in OK is 2) Thus, write (α, β) for the ideal (α) + (β). Then the product

(α, β)(γ, δ) = {
n∑
i=1

µiνi | µi ∈ (α, β), νi ∈ (γ, δ)}

clearly contains αγ, αδ, βγ, βδ. On the other hand, µiνi is of the shape (αa + βb)(γc + δd) ∈
(αγ, αδ, βγ, βδ). Thus,

(α, β)(γ, δ) = (αγ, αδ, βγ, βδ)

Reducing generators explicitly can be done using ad-hoc methods (usually just expanding and double
inclusion).
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15.1 Fermat’s Last Equation for the Cubic

We prove in this subsection that x3 + y3 = z3 has no nontrivial solutions in Z. We work in
K = Q(

√
−3), and we write

ω =
−1 +

√
−3

2

such that OK = Z[ω] for the rest of this subsection.

Lemma 15.1.1. We have the following:

• ω3 = 1. The units of OK are ±1,±ω,±ω2.

• The ring OK is a UFD.

• The element λ :=
√
−3 is prime with norm 3. Moreover we have λ = ω(1−ω) = (−ω2)(1−ω2).

Proof. Note that to find the units, we look for NormK|Q(a + bω) = a2 − ab + b2 = ±1. The set of
solutions that satisfy this gives exactly the above units. To show OK is a UFD, it suffices to show
that Q(

√
−3) has class number 1. This is actually immediate as we have

cK =

(
2

π

)√
3 ≈ 1.103 < 2

Thus every ideal class contains a prime ideal whose norm is at most 1, and in particular every ideal
class contains a principal ideal, thus actually simply has class number 1. The last case follows by a
simple check.

Lemma 15.1.2. If α ∈ Z[ω] and λ does not divide α, then α3 = ±1 mod λ4.

16 Preliminaries

16.0.1 Linear Maps

Definition 16.0.1. Let V be a vector space over a field k. Define GL(V ) to be the set of invertible
linear maps, with group operation defined by composition.

Proposition 16.0.2. Let g ∈ GL(V ) be an element of finite order and suppose that k is algebraically
closed with 0 characteristic. Then g is diagonalizable.

Proof. Let n be the order of g ∈ GL(V ). Then gn = 1, so g is annihlated by the polynomial
f(x) := xn− 1. The mg|f , but as f splits in k and has no repeated roots, mg(x) splits into distinct
linear factors. Hence g is diagonalizable by the Primary Decomposition Theorem.

Remark 16.0.3. The converse does not hold in general. Consider k = F2, V = k{e1, e2} and
g ∈ GL(V ) be given by g(e1) = e1, g(e2) = e1 + e2. Then g2 = 1, and mg(x) = x2 − 1 = (x − 1)2.
This has repeated roots, hence not diagonalizable.
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16.0.2 Direct Sum

Definition 16.0.4. Let V and W be vector spaces. The external direct sum is the vector space
V ⊕W := V ×W .

Remark 16.0.5. The external direct sum is consistent with the internal direct sum by identifying
V and W with their images {(v, 0) | v ∈ V } and {(0, w) | w ∈W} inside V ×W . The sum of their
images is all of V ×W and the intersection is {(0, 0)}.

Definition 16.0.6. The dual space of a vector space V over F is Hom(V,F), where addition is
defined pointwise and multiplication by composition.

Remark 16.0.7. Idempotent actions decompose vector spaces. That is, if P : V → V with P 2 = P ,
then we can write

V = P (V )⊕ kerP

noting that we can write v = P (v) + (v − P (v)).

16.0.3 Tensor Product

Definition 16.0.8. Let V and W be two vectos spaces, with {v1, . . . , vm} and {w1, . . . , wn} as basis
for V and W respectively. The tensor product of V and W , written V ×W is the free vector space
on the set of formal symbols

{vi ⊗ wj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
If v =

∑m
i=1 λivi and w =

∑n
j=1 µjwj are elements of V and W respectively, we define the elementary

tensor

v ⊗ w :=
m∑
i=1

n∑
j=1

λiµj(vi ⊗ wj) ∈ V ⊗W

Remark 16.0.9. We note the following results, which are immediate from definition.

• dimV ⊗W = (dimV )(dimW )

• The elementary tensors span V ⊗W

• Not every element of V ⊗W is an elementary tensor v ⊗ w.

The free vector space does not depend on the choice of basis.

Lemma 16.0.10. Let {v′1, . . . , v′m} and {w′
1, . . . , w

′
n} be any choice of basis for V and W . Then,

X ′ := {v′i ⊗ w′
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a basis for V ⊗W .

Proof. We note that elementary tensors in V ⊗W distribute, in the sense that

(v + v′)⊗ (w + w′) = (v ⊗ w) + (v ⊗ w′) + (v′ ⊗ w) + (v′ ⊗ w′)

for all v, v′ ∈ V , w,w′ ∈W , and hence

(λv)⊗ w = λ(v ⊗ w) = v ⊗ (λw)

for all v ∈ V,w ∈W,λ ∈ k. Hence, we can write each vi as a linear combination of {v′1, . . . , v′m} and
each wj as a linear combination of {w′

1, . . . , w
′
n}, and see that the original basis vectors vi ⊗ wj of

V ⊗W all lie in the span of X ′. As the size of this set is at most mn, it must be linearly independent,
thus a basis.
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Remark 16.0.11. The above proof also shows that the canonical map ⊗ : V ×W → V ⊗W by
(v, w) 7→ v ⊗ w is bilinear, such that

(λv1 + v2)⊗ (µw1 + w2) = λµ(v1 ⊗ w1) + λ(v1 ⊗ w) + µ(v2 ⊗ w1) + (v2 ⊗ w2)

Lemma 16.0.12 (Universal Property of Tensor Product). Let V and W be vector spaces. Then
for every blinear map b : V ×W → U for some third vector space U , we have a unique linear map
b̃ : V ⊗W → U such that the following commutes:

V ×W U

V ⊗W

b

b̃

Proof. Fix bases {v1, . . . , vm} for V and {w1, . . . , wn} for W . Fixing a bilinear map b : V ×W → U ,
this forces any b̃ : V ⊗W → U to be the unique linear map that sends the basis vector vi ⊗ wj ∈
V ⊗W to b(vi, wj), if it exists. It thus suffices to show this map commutes with any element in
V × W . Taking any v =

∑
i λivi ∈ V and w =

∑
j µjwj ∈ W , b̃ sends the elementary tensor

v ⊗ w =
∑

i,j λiµjvi ⊗ wj to

∑
i,j

λiµjb(vi, wj) = b

∑
i

λivi,
∑
j

µjwj

 = b(v, w)

by using the bilinearity of b.

16.0.4 Module Endomorphisms

Definition 16.0.13. The center of the ring A is

Z(A) := {z ∈ A | az = za, for all a ∈ A}

The center is a commutative unital subring of A.

Definition 16.0.14. Let A be a ring and V be an A-module. The endomorphism ring of V ,
denoted EndA(V ) is the set of all A-module homomorphisms ψ : V → V equipped with pointwise
addition of homomorphisms and composition as multiplication.

Remark 16.0.15. When V is an A-module, it is an EndA(V )-module via evaluation, f · v := f(v),
for f ∈ EndA(V ) and v ∈ V . The two actions of A and EndA(V ) on V commute pointwise by
definition. In particular, the action of any central element z ∈ Z(A) on V is by an A-module
endomorphism.

Definition 16.0.16. A ring A is an k-algebra if it contains k as a central subfield. If A is a
semisimple ring, we say that A is a semisimple k-algebra. A homomorphism of k-algebras is
a k-linear ring homomorphism.

k being inside the center allows it to ‘act’ like the scalar, making the definition of homomorphism
the way we think of it naturally.
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16.0.5 Group and Module Notations

Definition 16.0.17. Let G be a finite group and let g ∈ G. Define

• gG to denote the conjugacy class of g in G,

gG := {gx | x ∈ G}where gx := x−1gx

• CG(g) denotes the centraliser of g in G, with

CG(g) := {x ∈ G | gx = xg}

Remark 16.0.18. By The Orbit Stabilizer on the conjugation action, we have |gG| · |CG(g)| = |G|
for any g ∈ G, where gG is the conjugacy class, and the stabilizer of g is exactly the centraliser.

Definition 16.0.19. Let V be a CG-module. The invariant submodule of V is

V G := {v ∈ V | g · v = v, for all g ∈ G}

16.0.6 Algebraic Numbers

Notation 16.0.20. We write A for the set of algebraic integers over Q. Note that the set of
algebraic numbers is the union of all subfields of C of finite dimension as a Q-vector space.

Remark 16.0.21. Note the following:

• Any integer is an algebraic integer by the linear function

• Any root of unity is an algebraic integer

• If z is an algebraic number, then mz is an algebraic integer for some integer m

• Q ∩ A = Z (by taking any element of the form r/s, taking it’s monic polynomial, clearing
denominators to show that s divides r).

Proposition 16.0.22. Let M be a finitely generated subgroup of (C,+). Then

{z ∈ C | zM ⊆M} ⊆ A

17 Definitions and Examples

Definition 17.0.1. Let G be a finite group and let V be a finite dimensional vector space over k.
A representation of G on V is a group homomorphism

ρ : G→ GL(V )

The degree of a representation is dimV .

Example 17.0.2. We record some examples of representations.

• The cyclic group G = ⟨g⟩ of order 2 acts on V = k by negation taking ρ(g) = −1, giving a
representation of G degree 1.
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• If G = D6 is the symmetry group of a triangle and k = R, then G acts by R-linear trans-
formations on the plane V = R2, giving a representation. In general, the symmetry group
of the regular n-gon G = D2n acts on V = R2 by R-linear transformations, giving a natural
representation of G of degree 2.

• Let k = R and let X ⊆ R3 be the se tof vertices of a cube centered at the origin, and let G
be the stabilizer of X in the rotation group SO3(R). Then G is isomorphic to the symmetry
group S4, giving a degree 3 representation S4 → GL(R3).

Example 17.0.3. Ex 1.6 from RT, gal group into base field automorphisms

18 Representation of Finite Groups

Definition 18.0.1. Let X be a finite set. The free vector space on X is the set

kX :=

{∑
x∈X

axx | ax ∈ k

}

of formal linear combinations of members of X with coefficients ax lying in k. Addition and
scalar multiplication are taken as the natural ones.

Remark 18.0.2. Note that X is naturally a basis for kX.
Let X be a finite set equipped with a left-action of the finite group G. Each g ∈ G gives a

permutation ρ(g) : X → X by ρ(g)(x) = g · x. This permutation extends uniquely to an invertible
linear map ρ(g) : kX → kX by

ρ(g)

(∑
x∈X

axx

)
=
∑
x∈X

axg · x

Since g · (h · x) = (gh) · x for any g, h ∈ G and x ∈ X, we have ρ(g)ρ(h) = ρ(gh) in GL(kX) for all
g, h ∈ G. Thus ρ : G→ GL(kX) is a representation.

Definition 18.0.3. Noting the remark above, given X is a finite set equipped with a left action by
a finite group G, ρ : G → GL(kX) is a representation, called the permutation representation
associated with X.

Definition 18.0.4. The representation ρ : G→ GL(V ) is faithful if ker ρ = {1}.

Definition 18.0.5. Let G be a finite group. A matrix representation is a group homomorphism
ρ : G → GLn(k), where GLn(k) = Mn(k)

× is the group of invertible n × n matrices under matrix
multiplication.

Definition 18.0.6. Let B := {v1, . . . , vn} be a basis for V and let ϕ : V → V be a linear map.The
matrix of ϕ with respect to B is B[ϕ]B = (aij)

n
i,j=1 where

ϕ(vj) =
n∑
i=1

aijvi

for all j = 1, . . . , n.

Remark 18.0.7. Let V be a vector space V with basis B. Then,
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• The map ϕ 7→B [ϕ]B gives an isomorphism of groups GL(V ) ∼= GLn(k).

• Every representation ρ : G→ GL(V ) gives rise to a matrix representation

ρB(g) :=B [ρ(g)]B

for all g ∈ G.

• Every matrix representation σ : G→ GLn(k) defines a representation σ : G→ GL(kn) on the
space kn of column vectors, taking σ : kn → kn be the k-linear map

σ(g)(v) = σ(g)v

for all g ∈ G, v ∈ kn via matrix multiplication. By abuse of notation, the underline is
sometimes omitted.

Example 18.0.8. Let G = S3 act on X = {e1, e2, e3} by permutation of indices. This gives a
degree 3 permutation representation ρ : G→ GL(kX) where for instance,

ρX((123)) =

0 0 1
1 0 0
0 1 0


Definition 18.0.9. Let ρ : G → GL(V ) and σ : G → GL(W ) be two representations. A homo-
morphism, also known as the intertwining operator is a linear map

ψ : V →W

such that
σ(g) ◦ ψ = ψ ◦ ρ(g)

for all g ∈ G. We say that ψ is an isomorphism if it is bijective.

Definition 18.0.10. Two matrix representations ρ1 : G→ GLn(k) and ρ2 : G→ GLn(k) are said
to be equivalent if there exists A ∈ GLn(k) such that

ρ2(g) = Aρ1(g)A
−1

for all g ∈ G.

Remark 18.0.11. If ρ1 and ρ2 are equivalent matrix representations, then the equality of products
of matrices ρ2(g)A = Aρ1(g) translates to an equality of linear maps

ρ2(g) ◦A = A ◦ ρ1(g)

in GL(kn), meaning that representations ρ1 and ρ2 are isomorphic. The converse is also true.

Definition 18.0.12. Let ρ : G→ GL(V ) be a representation, and let U be a linear subspace of V .
Then,

• U is G-stable if ρ(g)(u) ∈ U for all g ∈ G and u ∈ U .

• Suppose that U is G-stable. Then the subrepresentation of ρ afforded by U is

ρU : G→ GL(U)

given by ρU (g)(u) := ρ(g)(u) for all g ∈ G, u ∈ U .
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• Suppose that U is G-stable. The quotient representation of ρ afforded by U is

ρV/U : G→ GL(V/U)

given by ρV/U (g)(v + U) := ρ(g)(v) + U for all g ∈ G and v + U ∈ V/U .

Note that the maps are well defined when U is G-stable.

Lemma 18.0.13 (First Isomorphism For Representations). Let ψ : V → W be a homomorphism
between representations ρ : G→ GL(V ) and σ : G→ GL(W ). Then,

1. kerψ is a G-stable is a subspace of V .

2. Im ψ is a G-stable subspace of W

3. There is a natural isomorphism
V/ kerψ ∼= Im ψ

between G-representations ρV/ kerψ and σIm ψ

Proof. We note the commutative diagram

V V

W W

ρ(g)

ψ ψ

σ(g)

Then the first two cases are clear. We note the quotient representation of ρ afforded by kerψ
and the subrepresentation of σ afforded by Im ψ induces a map Ψ : V/ ker(ψ) → Im ψ with
v + ker(ψ) 7→ ψ(v) alongside a commutative diagram

V/ker ψ V/ker ψ

Imψ Imψ

ρV/ker ψ(g)

Ψ Ψ

σImψ(g)

In particular, V/ kerψ ∼= Im ψ.

Definition 18.0.14. Let G be a group. The trivial representation of G on a vector space V ,
1 : G→ GL(V ) given by

1(g)(v) = v

for all g ∈ G, v ∈ V .

Example 18.0.15. A representation need not be trivial, even if the subrepresentation and quotient
representation are both trivial.

Let k = Fp and G = ⟨g⟩ be the cyclic group of order p. Let ρ : G → GL2(k) be the matrix
representation given by

ρ(gi) =

(
1 i
0 1

)
Let v1, v2 be the standard basis for V = k2. Then U := ⟨v1⟩ is a G-stable subspace, as ρ(gi)(v1) = v1
for all i. The subrepresentation ρU : G → GL(U) and the quotient representation ρV/U : G →
GL(V/U) are both trivial, but ρ is clearly not trivial.
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Definition 18.0.16. the representation ρ : G→ GL(V ) to a nonzero V is irreducible or simple
if U being a G-stable subspace of V implies that either U = {0} or U = V .

Definition 18.0.17. Let ρ : G → GL(V ) be a representation and U be a G-stable subspace. A
G-stable complement for U in V is a G-stable subspace W such that V = U ⊕W .

Example 18.0.18. Consider the permutation representation of G = S3 afforded by kX, where
X = {e1, e2, e3}. Then

U := ⟨e1 + e2 + e3⟩

is a G-stable subspace, with G fixing every vector in U . So U is a trivial subrepresentation of V .
Now let

W := {a1e1 + a2e2 + a3e3 | a1 + a2 + a3 = 0}

This is a G-stable complement to U in V , provided char(k) ̸= 3. Let B = {v1, v2} be the basis for
W , where v1 := e1 − e2 and v2 = e1 − e3. Then the degree 2 matrix representation σ := (ρW )B :
G→ GL2(k) afforded by W is determined by

σ((123)) =

(
0 −1
1 −1

)
σ((12)) =

(
−1 1
0 1

)
Proposition 18.0.19. The nontrivial Sn-stable subspaces of the permutation representation ρ :
Sn → GL(kX) are V = ⟨

∑n
i=1 xi⟩,W = {

∑n
i=1 aixi |

∑
i ai = 0}

Proof. Sketch: dimV = 1, so non nontrivial stable subspaces are contained in V . Taking any
stable subspace U with nontrivial intersection with V , we show that this at least contains W . As
dimW = n− 1, either this is W or kX.

Proposition 18.0.20. Let X be a G-set and that the permutation representation ρ : G→ GL(kX)
is irreducible. Then, the G-action on X is transitive. The converse need not hold.

Proof. Suppose for a contradiction the G-action on X is not transitive. Then there is an x ∈ X
whose G-orbit G · x is a proper subset of X. In particular, ∅ ⊊ {x} ⊊ G · x ⊊ X. Thus,

{0} ≰ k(G · x) ≰ kX

Given any g ∈ G, h · x ∈ G · x ⊆ k(G · x),

ρ(g)(h · x) = g · (h · x) = (gh) · x ∈ G · x ⊆ k(G · x)

Thus as G ·x is a natural basis for k(G ·x), this is ρ(g)-invariant. This is a proper G-stable subspace,
hence the permutation representation is reducible.

To see the converse is false, the permutation representation is reducible, but the Sn action on n
elements is clearly transitive.

Theorem 18.0.21 (Maschke). Let G be a finite group and suppose that |G| ≠ 0 in k. Let U be a
G-stable subspace of a finite dimensional G-representation V . Then U admits at least one G-stable
complement W in V .

Proof. Pick a basis for U and extend it to a basis for V such that we find some Z with V = U ⊕Z.
Z is not G-stable in general, but we will replace this with a stable one. Let ρ : G→ GL(V ) be our
representation, writing g · v := ρ(g)(v) as ρ is a group homomorphism.
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Let π : V → V be the projection map along the decomposition V = U⊕Z such that π(u+z) = u
for all u ∈ U, z ∈ Z. Now define a new linear map ψ : V → V by

ψ(v) :=
1

|G|
∑
x∈G

ρ(x)π(ρ(x)−1(v))

for all v ∈ V . Note that this is well-defined as |G| is invertible in the field k. Fixing a g ∈ G and
v ∈ V , we have

|G|ψ(g · v) =
∑
x∈G

x · π(x−1 · (g · v))

Writing y−1 = x−1g, noting that x runs over the entire group in the sum, we get

|G|ψ(g · v) =
∑
y∈G

(gy) · π(y−1 · v) = g ·
∑
y∈G

y · π(y−1 · v) = g · |G|ψ(v)

Cancelling |G|, we deduce that ψ is a homomorphism of representations. Also, for any u ∈ U ,

ψ(u) =
1

|G|
∑
x∈G

x · π(x−1 · u) = 1

|G|
∑
x∈G

x · (x−1 · u) = u

noting that as U is G-stable, π(x−1 · u) = x−1 · u for all x ∈ G. So the restriction of ψ to U
is the identity map. As U is G-stable and π(V ) = U , we have ψ(V ) ⊆ U . As ψ(U) = U , we
have ψ(V ) = U . With Im(ψ) = U , taking W := kerψ gives a G-stable subspace of V . Noting
that dimW + dimU = dimV by Rank Nullity and for any v ∈ W ∩ V , 0 = ψ(v) = v, we have
V = U ⊕W , showing that W is a G-stable complement to U in V .

Remark 18.0.22. Maschke’s Theorem fails if the characteristic of the ground field divides |G|, as
in Example 18.0.15 (noting that the choice for W is ⟨v′2⟩ where v′2 = (a, b) for b ̸= 0, which is never
stable by ρ).

Definition 18.0.23. Let ρ : G → GL(V ) be a representation. ρ is completely reducible if
V = {0}, or there exist G-stable subspaces U1, . . . , Um of V such that

V = U1 ⊕ · · · ⊕ Um

and the subrepresentation of G afforded by each Ui is irreducible.

Corollary 18.0.24. Let G be a finite group and suppose that char(k) ∤ |G|. Then every finite
dimensional representation ρ : G→ GL(V ) of G is completely reducible.

Proof. We proceed by induction on dimV , where the case dimV = 0 is true by definition. Let U1

be a G-stable non-zero subspace of V of smallest possible dimension (which exists, as V is one such
space). By construction, U1 is irreducible. Then U1 admits a G-stable complement W by Maschke’s
Theorem. Now dimW < dimV , so by induction W = U2 ⊕ · · · ⊕ Um for some G-stable irreducible
subspaces U2, . . . , Um.. Hence V = U1 ⊕ U2 ⊕ · · · ⊕ Um is also completely reducible.
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19 Decomposing Representations

Definition 19.0.1. Let G be a finite group. The group ring of G (with coefficients in k) is the
vector space kG with multiplication defined as(∑

x∈G
axx

)
·

∑
y∈G

byy

 =
∑
g∈G

(∑
x∈G

axbx−1g

)
g

The identity element is the formal sum with identity coefficient on the identity of G.

Remark 19.0.2. The group G embeds into the group ring via the map g 7→ g. This embedding
respects multiplication, thus realises G as a subgroup of the group of units kG× in the ring kG.

Example 19.0.3. Let G = ⟨x⟩ be a cyclic group of order n. Then kG has G = {1, x, . . . , xn−1} as a
basis, so it is generated by k and x as a ring, and k commutes with x. Define a ring homomorphism
ψ : k[T ]→ kG by ψ(f(T )) = f(x) for each f(T ) ∈ k[T ]. Then ψ is surjective and kerψ = ⟨Tn− 1⟩.
So, by the first isomorphism theorem for rings, we get

kG ∼= k[T ]/⟨Tn − 1⟩

If k contains a primitive n-th root of unity ζ (such that Tn−1 splits), then it factors into a product
of distinct linear factors (T − 1)(T − ζ) · · · (T − ζn−1). By the Chinese Remainder Theorem, this
implies

kG ∼= k[T ]/⟨Tn − 1⟩ ∼= k × k × · · · × k︸ ︷︷ ︸
n times

Proposition 19.0.4. Let V be a vector space and G be a group.

1. Suppose that ρ : G → GL(V ) is a representation. Then V becomes a left kG-module via the
action (∑

x∈G
axx

)
· v =

∑
x∈G

axρ(x)(v)

for all ax ∈ k, v ∈ V

2. Suppose that V is a left kG-module. Then ρ : G→ GL(V ) defined by

ρ(g)(v) := g · v

for all g ∈ G, v ∈ V is a representation.

3. This gives a bijection between the set of representations ρ : G → GL(V ) and the set of kG-
module structures kG× V → V on V .

Remark 19.0.5. This correspondence of G-representations to kG-modules moves general theorems
about modules into representations, including isomorphism theorems and correspondences.

Example 19.0.6. Let A be a ring. The free A-module of rank 1 is the abelian group A equipped
with the left-multiplication action of A by

a · b = ab

for all a, b ∈ A. A-submodules of this A-module are called left-ideals.
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Definition 19.0.7. If A = kG, the representation ρ : G → GL(kG) corresponding to the free
kG-module of rank 1 is called the left regular representation.

Remark 19.0.8. The left-regular representation coincides with the permutation representation of
G on kG, where we extend from the natural action of G on G by left multiplication to kG.

Definition 19.0.9. An A-module M is irreducible or simple if M is nonzero, and if N is an
A-submodule of M , N = {0} or N =M .

An A-module V is completely reducible if it is either the 0-module, or is equal to a direct sum
of finitely many irreducible submodules.

A homomorphism of representations is simply a map of kG-modules, known as a kG-linear map.

Definition 19.0.10. Let A be a ring. We say that A is semisimple if the free A-module of rank
1 is completely reducible.

Proposition 19.0.11. Let G be a finite group such that |G| ≠ 0 in k. Then the group ring kG is
semisimple.

Proof. Follows from correspondence and Maschke’s Theorem.

Definition 19.0.12. Let V be an A-module. We say that V is cyclic if it can be generated by a
single element v : V = A · v. The annihilator of v ∈ V is the left-ideal

AnnA(v) := {a ∈ A | av = 0}

Example 19.0.13. Simple modules are cyclic. This is because any span of a single element produces
a submodule which must be the entire thing.

Lemma 19.0.14. Every cyclic A-module V is isomorphic to a quotient module of the free module
of rank 1. If V = A · v, then

V ∼= A/AnnA(v)

Proof. The map ψ : A → V given by a 7→ a · v is an A-module homomorphism. This is surjective,
so by the first isomorphism theorem, we have

V = Im ψ ∼= A/ kerψ

Now this follows as kerψ = AnnA(v).

Lemma 19.0.15. Let V,W be simple A-modules. Then every non-zero A-linear map ψ : V → W
is an isomorphism.

Proof. We know kerψ is an A-submodule of V and that Im ψ is an A-submodule of W . As ψ is
non-zero kerψ is also not all of V and Im ψ is nonzero. As V and W are both simple, it must be
the case that kerψ = 0 and Im ψ =W . Hence ψ is bijective, and therefore is an isomorphism.

Proposition 19.0.16. Let A be a semisimple ring. Then A has only finitely many simple A-modules
up to isomorphism.
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Proof. Write A = V1⊕· · ·⊕Vr for some simple A-submodules Vi of A. Let V be a simple A-module,
pick a nonzero vector v ∈ V and consider the A-module map ψ : A → V by a 7→ a · v. Let
ψi : Vi → V be the restriction of ψ to Vi such that if a = a1+ · · ·+ar is the decomposition of a ∈ A
with ai ∈ Vi for each i, then

ψ(a) = ψ1(a1) + · · ·+ ψr(ar)

If ψi is the zero-map for all i, then ψ is the zero map. Hence ψi is nonzero for some i. In particular,
V is isomorphic to one of the irreducible representations in the list V1, . . . , Vr.

Theorem 19.0.17. Let G be a finite group such that |G| ≠ 0 in k. Then G has only finitely many
irreducible representations up to isomorphism.

Proof. The ring kG is semisimple by Maschke’s Theorem. By Proposition 19.0.16 and correspon-
dence, the proof follows.

Definition 19.0.18. For a finite group G, we write rk(G) to denote the number of isomorphism
classes of irreducible k-representations of G.

Theorem 19.0.19 (Schur’s Lemma). Suppose that k is algebraically closed. Let V be a simple
module over a finite dimensional k-algebra A. Then every A-submodule endomorphism of V is
given by the action of some scalar λ ∈ k such that

EndA(V ) = k1V

Proof. By Lemma 19.0.14, V is isomorphic to a quotient module of A, so V is itself finite dimensional
as a k-vector space. Let ψ : V → V be an A-module endomorphism. Then it is a k-linear map, so has
at least one eigenvalue λ ∈ k (because the characteristic polynomial splits). Hence ψ−λ1V : V → V
is a homomorphism with nonzero kernel, and as V is simple, is the zero map. Thus ψ = λ1V is the
action of λ ∈ k.

Definition 19.0.20. Let A be a k-algebra and V be an A-module with EndA(V ) = k1V . Then
by Schur’s Lemma, every z ∈ Z(A) acts on V by a scalar, which is denoted by zV . The ring
homomorphism Z(A)→ k via z 7→ zV is called the central character of V .

19.1 Artin-Weddernburn

For this subsection, we fix A to be some semisimple ring, and V1, . . . , Vr will denote the complete
list of representatives for the isomorphism classes of simple A-modules. We also fix a decomposition

A =

r⊕
i=1

ni⊕
j=1

Li,j

of the A-module A into a direct sum of simple left ideals Li,j where Li,j ∼= Vi for each i and j.
Note that we must have n1, . . . , nr ≥ 1, as each Vi occurs as a direct summand of A at least

once. Also, the left-ideals are not unique in general.

Proposition 19.1.1. Let A be a finite dimensional semisimple k-algebra and suppose that k is
algebraically closed. Then dimZ(A) ≤ r.
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Proof. By Schur’s Lemma, we have EndA(Vi) = k1Vi for all i, so we can define a k-linear map
ψ : Z(A)→ kr by ψ(z) := (zV1 , . . . , zVr).

Suppose now that ψ(z) = 0 for some z ∈ Z(A), such that zVi = 0 for all i. We show z = 0.
By the decomposition of 1 ∈ A along the decomposition, we have

1 =
r∑
i=1

ni∑
j=1

ei,j

for some ei,j ∈ Li,j .
Then we must have

z = z1 =
r∑
i=1

ni∑
j=1

zei,j =
r∑
i=1

ni∑
j=1

zViei,j

As zVi = 0 for all i, z = 0. Hence ψ is injective and so it follows that dimZ(A) ≤ dim kr = r.

Lemma 19.1.2. Each Bi :=
⊕ni

j=1 Li,j is a two-sided ideal of A, and A = B1 ⊕ · · · ⊕Br.

Proof. The second part of the statement follows from definition, and each Bi is a left ideal of A.
Hence it suffices to show it is a right ideal in A. Fix a ∈ A and consider Li,j ⊆ Bi. Let i′ ̸= i
and 1 ≤ j′ ≤ ni′ be another pair of indices, and consider the projection ψ ↠ Li′,j′ along the
decomposition.

The restriction of ϕ◦ra : A→ Li′,j′ to Li,j by right multiplication is an A-module homomorphism
from Li,j to Li′,j′ . As i′ ̸= i, these modules are not isomorphic, so the restriction must be the zero
map. Varying i′ and j′, the projection of Li,j onto each B′

i with i′ ̸= i is zero. Hence Li,ja ⊆ Bi.
As Bi is equal to the sum of all Li,j , we have Bia ⊆ Bi for all a ∈ A.

Lemma 19.1.3. Let R be a k-algebra and suppose that R = S1 ⊕ · · · ⊕ Sr for some non-zero
two-sided ideals S1, . . . , Sr. Then dimZ(R) ≥ r.

Proof. Write 1 = e1 + · · · + er for some ei ∈ Si. Let a ∈ R and fix i = 1, . . . , r. Since Si is a
left-ideal, aei ∈ Si. As a = ae1 + · · · + aer, we see that aei is the component of a in Si in the
decomposition R = S1 ⊕ · · · ⊕ Sr. On the other hand, as Si is a right ideal, eia is the component
of a in Si by the same decomposition. Hence aei = eia for all i and a ∈ R, thus ei is central.

If i ̸= j, then eiej ∈ Si∩Sj = {0}, so eiej = 0. Hence ei = ei ·1 = ei
∑r

j=1 ej = e2i . In particular,
the set {e1, . . . , er} forms a set of pairwise orthogonal idempotents such that eiej = δi,jei.

Now suppose that
∑r

i=1 λiei = 0 for some λi ∈ k. Multiplying by ej gives λjej = 0. If ej = 0,
then for all a ∈ Sj we have a = aej = 0, contradicting the assumption that Sj ̸= {0}. Thus ej ̸= 0
for all j, giving {e1, . . . , er} to be a linearly independent set over k. Thus r ≤ dimZ(R).

Theorem 19.1.4. Let A be a finite dimensional semisimple k-algebra and suppose that k is alge-
braically closed. Then r = dimZ(A).

Proof. By Proposition 19.1.1, we have r ≥ dimZ(A). By Lemma 19.1.2 A = B1⊕· · ·⊕Br for some
two-sided ideals Br, so by Lemma 19.1.3, r ≤ dimZ(A), so the proof follows.

Definition 19.1.5. For a finite group G, let s(G) denote the number of conjugacy classes of G.
Now let C1, . . . , Cs be the conjugacy classes of G. For each i = 1, . . . , s, define the conjugacy class
sum of Ci to be

Ĉi :=
∑
x∈Ci

x ∈ kG
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Proposition 19.1.6. {Ĉ1, . . . , Ĉs} is a basis for Z(kG) as a vector space, thus

dimZ(kG) = s(G)

Proof. Let Ca be the conjugacy class of a ∈ G. Fix a x ∈ G, and define ϕx : G→ G by y 7→ x−1yx.
This is a bijective function closed under conjugacy classes, we have

Ĉa =
∑
y∈Ca

y =
∑
z∈Ca

ϕx(z) =
∑
z∈Ca

x−1zx = x−1

(∑
z∈Ca

z

)
x = x−1Ĉax

In particular, Ĉa commutes with any x ∈ G. Hence it commutes with any element in kG. Thus
Ĉ ∈ Z(kG) for any choice of conjugacy class.

Fix z :=
∑

x∈G axx ∈ Z(kG). We have

∑
x∈G

axx = z = g−1zg = g−1

(∑
x∈G

axx

)
g =

∑
x∈G

ax(g
−1xg)

In particular, coefficients agree within any conjugacy class. Write λi for the coefficient in the
conjugacy class Ci. Then, particular, we can write

z =
s∑
i=1

∑
x∈Ci

axx =
s∑
i=1

λi
∑
x∈Ci

x =
s∑
i=1

λiĈi

Thus Z(kG) is spanned by the sums of conjugacy classes.
If 0 =

∑s
i=1 λiĈi =

∑s
i=1

∑
x∈Ci λix. As G is a linearly independent set in kG, we have λi = 0

for all i. Thus the conjugacy classes are linearly independent.

Corollary 19.1.7. Let G be a finite group and k be an algebraicaly closed field with |G| ≠ 0 in k.
Then rk(G) = s(G).

Proof. By Maschke, kG is a semisimple k-algebra with dimZ(kG) = s(G) by Proposition 19.1.6.
The proof follows from Theorem 19.1.4.

Corollary 19.1.8. Suppose that |G| ≠ 0 in k and take e := 1
|G|
∑

g∈G g ∈ kG. Then e is a central
idempotent.

Proof. e is a kG-linear combination of all conjugacy class sums, so e ∈ Z(kG) by Proposition 19.1.6.
Now,

e2 =
1

|G|
∑
g∈G

(
1

|G|
∑
h∈H

gh

)
=

1

|G|
∑
g∈G

(
1

|G|
∑
h∈G

h

)
=

1

|G|
∑
g∈G

e = e

Lemma 19.1.9. We note the following properties about the ring decomposition:

1. Each Bi is a ring with identity element ei

2. A is isomorphic to the product of rings (Bi, ei)

A ∼= B1 × · · · ×Br
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3. Each Bi is a semisimple ring with unique simple module Vi

Proof. (i) Lemma 19.1.2 shows that Bi is an additive subgroup of A stable under multiplication.
In the proof of Lemma 19.1.3 we saw that for any a ∈ A, aei = eia is the Bi component of a along
the decomposition A = B1 ⊕ · · · ⊕Br. In particular, aei = eia = a for all a ∈ Bi

(ii) The isomorphism sends a ∈ A to (ae1, . . . , aer) ∈ B1 × · · · ×Br.
(iii) Fix ℓ = 1, . . . , ni and suppose that U is a Bi-submodule of Li,ℓ. Then,

A · U =

 r⊕
j=1

Bj

 · U ≤ U
where the last equality follows from the fact Bj ·U ≤ Bj ·Bi = Bjej ·eiBi = 0 if j ̸= i, and Bi ·U ≤ U
as U is a Bi-submodule. In particular, U is an A-submodule of Li,ℓ, thus U is either zero of all of
Li,ℓ as it is a simple A-module. Thus Li,ℓ hence Vi are all simple Bi-moduoes. As Bi =

⊕ni
j=1 Li,j ,

it is a semisimple ring. In particular, by Proposition 19.0.16, Vi is the only simple Bi-module up to
isomorphism.

Remark 19.1.10. Note that Bi is an additive subgroup of A stable under multiplication, but it is
not a unital subring when r ≥ 2, as the identity element ei is not the identity element 1 in A.

Definition 19.1.11. Let A be a ring. The opposite ring to A, written Aop has the same abelian
group as A, but multiplication defined as

a ⋆ b = ba

for all a, b ∈ Aop

Proposition 19.1.12. For each a ∈ A, write ra : A → A to be the left A-linear map given by
ra(b) = ba for each b ∈ A. The map

r : Aop → EndA(A) a 7→ ra

is an isomorphism of rings.

Proof. We note that r is a ring homomorphism, taking the structure from A.
For a ∈ A, if ra = 0, then we have a = 1Aa = ra(1A) = 0(1A) = 0, so the kernel of r is trivial.

Take any ψ ∈ EndA(A). For every b ∈ A, we have by A-linearity of ψ,

ψ(b) = ψ(b1) = bψ(1) = rψ(1)(b)

In particular ψ = rψ(1). So we have an isomorphism of rings.

Proposition 19.1.13. Let V be an A-module. Suppose D := EndA(V ) and let n ≥ 1.

1. The inclusion maps and projection maps to each coordinate give a ring homomorphism
Mn(D) ∼= EndA(V

n)

2. For any ring S, Mn(S)
op ∼=Mn(S

op).
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Proof. (i) Let σj : V → V n be the inclusion maps and πj : V n → V be the projection maps. Define
α :Mn(D)→ EndA(V

n) by

(ϕi,j) 7→
n∑
i=1

n∑
j=1

σi ◦ ϕi,j ◦ πj

and β : EndA(V
n)→Mn(D) by

ϕ 7→ (πi ◦ ψ ◦ σj)

Now,

(β ◦ α)(ϕi,j) = β

∑
i

∑
j

σi ◦ ϕi,jπj


And the i′, j′-th coordinate of the evaluation is

πi′ ◦

∑
i

∑
j

σi ◦ ϕi,jπj

σj′ =
∑
i

∑
j

(πi′ ◦ σi) ◦ ϕi,j ◦ (πj ◦ σj′) = ϕi′,j′

Noting that πi ◦ σj = δi,j , thus α is injective.
Also,

(α ◦ β)(ϕ) = α((π1 ◦ϕ ◦ σj)) =
∑
i

∑
j

σi ◦ (πi ◦ϕ ◦ σj) ◦ πj =

(∑
i

σi ◦ πi

)
◦ϕ ◦

∑
j

σj ◦ πj

 = ψ

Noting that
∑

k σk ◦ πk = 1EndA(V n). Finally, this is a unital ring homomorphism, induced by the
linear structure of matrix multiplication and projection / inclusions.

(ii) This follows from the fact there is a natural isomorphism by transposing.

Proposition 19.1.14. Let B be a semisimple ring with exactly one simple module V up to isomor-
phism. Suppose that B ∼= V ⊕ · · · ⊕ V︸ ︷︷ ︸

n times

as a left B-module, and let D := EndB(V ). Then there is a

ring isomorphism
B ∼=Mn(D

op)

Proof. We know from Proposition 19.1.12 that B ∼= EndB(B)op. Since B = V n as a left B-module,
we have EndB(B) ∼=Mn(D). Hence

B ∼= EndB(B)op ∼=Mn(D)op ∼=Mn(D
op)

Noting Proposition 19.1.13.

Theorem 19.1.15 (Artin-Weddernburn). Suppose that k is an algebraically closed field and that
A is a finite dimensional semisimple k-algebra. Then there exist positive integers n1, . . . , nr and a
k-algebra isomorphism

A ∼=Mn1(k)× · · · ×Mnr(k)

Proof. By Lemma 19.1.9, without loss of generality, we may assume that r = 1, such that A has
exactly one simple module V up to isomorphism. Then A ∼= Mn(D

op) where D := EndA(V ) by
Lemma 19.1.14. On the other hand, D ∼= k by Schur’s Lemma.
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Proposition 19.1.16. Suppose that A =Mn(k) be the ring of n×n matrices with entires in k and
let V := kn be the natural left A-module of n× 1 column vectors. Then,

1. V is a simple A-module

2. A has no nonzero proper two sided ideals

3. A = L1 ⊕ · · · ⊕ Ln, where Lj :=Mn(k) · Ei,i is a decomposition into simple left ideals.

Proof. (i) First note that V is nonzero. Let W be an A-submodule of V and assume that W ̸= {0}.
Taking a nonzero w ∈ W , extend this to a basis for V . Consider the matrix that sends w to ei a
standard basis vector, and all other basis vectors to 0. Then we have T (v) = ei ∈W , so this forces
W = V .

(ii) Pick any two-sided nonzero ideal I ⊆Mn(k). As I is nonzero, choose A = (ai,j) ∈ I that is
nonzero. Let ai,j ̸= 0. Then,

EriAEjs = aijErs ∈ I

as I is two sided. Scaling, Ers ∈ I. Hence every elementary matrix Ers belongs in I, forcing
I =Mn(k).

(iii) Note first that the set Ei,i over i is a pairwise orthogonal idempotent. The span of Ei,i by
left-multiplication gives elements of the form Ej,i. In particular, as 1 =

∑
iEi,i,

A = A · 1 = A
∑
i

Ei,i =
∑
i

(AEi,i) ∈
∑
i

Ii

If
∑

iAiEi,i = 0, then right multiplication by Ej,j forces AjEj,j = 0, hence direct. Finally, Ii ≃ kn,
so is simple.

Remark 19.1.17. Note that the decomposition above need not be unique. We can pick E′
i,i =

PEi,iP
−1 for some invertible matrix P (not diagonal, to change the matrix), then this is again a

complete set of primitive orthogonal idempotent with a new decomposition Mn(k) =
⊕

iMn(k)E
′
i,i.

The main point is that Mn(k) is semisimple, and the decomposition is unique up to isomorphism.
Hence, permuting or conjugating maintains isomorphism.

Corollary 19.1.18. Suppose that k is algebraically closed. Let G be a finite group such that |G| ≠ 0
in k and let V1, . . . , Vr be a complete list of pairwise non-isomorphic simple kG-modules. Then we
have

1. kG ≃ V dimV1
1 ⊕ · · · ⊕ V dimVr

r as a kG-module

2. |G| =
∑r

i=1(dimVi)
2

Proof. We know that kG is a semisimple ring by Maschke’s Theorem, so by Artin Weddernburn,
we can decompose

kG ∼=Mn1(k)× · · · ×Mnr(k)

The matrix algebra Mn(k) acts on the space of column vectors kn by left-multiplication, and this
forces kn to be a simple Mn(k)-module. On the other hand, Mn(k) is isomorphic to a direct sum
of n copies of kn, so ni = dimVi for each i = 1, . . . , r.

The second statement is then immediate from the first.

Proposition 19.1.19. Every representation ρ : G→ GL(V ) extends to a k-algebra homomorphism
ρ̃ : kG→ Endk(V )
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Proof. As Endk(V ) is a k-vector space and G is a basis for kG, ρ : G→ GL(V ) ⊆ Endk(V ) extends
uniquely to a k-linear map ρ̃ : kG→ Endk(V ). Now this acts like a homomorphism for elements in
G, so it follows that

ρ̃(xy) = ρ̃

∑
g∈G

∑
h∈H

agbhgh

 =
∑
g∈G

∑
h∈H

agbhρ̃(gh) = ρ̃(g)ρ̃(h) =

∑
g∈G

agρ̃(g)

(∑
h∈H

bhρ̃(h)

)

Also, ρ̃(1kG) = ρ(1G) = 1Endk(V ).

20 Constructing representations

Lemma 20.0.1. Let V be a vector space and let G × V → V be a G-action on the set V . This
extends to a kG-module structure on V if and only if the G-action on V is linear, such that

g · (v + λw) = (g · v) + λ(g · w)

for all g ∈ G, v, w ∈ V , λ ∈ k.

Definition 20.0.2. Let V and W be G-repreesntations. The external direct sum V ⊕ W is a
G-representation via

g · (v · w) = (g · v, g · w)

for all g ∈ G, v ∈ V , w ∈W .

Definition 20.0.3. Let V be a G-representation. This induces a representation on the dual space
V ∗ via

(g · f)(v) := f(g−1 · v)

for all g ∈ G, f ∈ V ∗, v ∈ V . We call this the dual representation.

Definition 20.0.4. Let V,W be G-representations. The vector space Hom(V,W ) of all linear maps
from V to W admits a linear G-action by

(g · f)(v) = g · f(g−1 · v)

for all g ∈ G, f ∈ Hom(V,W ), v ∈ V . When W is the trivial 1-dimensional representation, we
recover the dual space Hom(V, k) = V ∗.

Lemma 20.0.5. Let V be a finite dimensional G-representation. The biduality isomorphism between
vector spaces by

τ : V → (V ∗)∗ τ(v)(f) := f(v)

for all f ∈ V ∗, v ∈ V is an isomorphism of G-representations.

Proof. Noting that the map is a bijection, it suffices to check that this is indeed a homomorphism
by the induced dual representations. Now,

(g · τ(v))(ψ) = τ(v)(g−1 · ψ) = (g−1 · ψ)v = ψ(g · v) = (τ(g · v))(ψ)
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20.0.1 Actions on Tensor

Definition 20.0.6. Let V and W be finite dimensional kG-modules. Define a G-action on V ⊗W
by setting

g · (v ⊗ w) := (g · v)⊗ (g · w)

for all g ∈ G, v ∈ V , w ∈W . This is called the tensor product representation V ⊗W .

This gives a well-defined G-representation as it is a linear G-action on V ⊗W .

Lemma 20.0.7. Let V and W be finite dimensional kG-modules. Then there is an isomorphism
of kG-modules

V ∗ ⊗W ∼= Hom(V,W )

Proof. For every f ∈ V ∗ and w ∈W , we have a linear map b(f, w) : V →W given by b(f, w)(v) :=
f(v)w. The resulting map b : V ∗ ×W → Hom(V,W ) is blinear, so by the Universal Property on
Tensors, extends to a linear map

α : V ∗ ⊗W → Hom(V,W )

given by α(f ⊗w)(v) := f(v)w for all f ∈ V ∗, w ∈W, v ∈ V . Let {v1, . . . , vn} be a basis for V and
let {v∗1, . . . , v∗n} be the corresponding dual basis for V ∗. We define a linear map β : Hom(V,W )→
V ∗ ⊗W by

f 7→
n∑
i=1

v∗i ⊗ f(vi)

We first show that these maps are mutual inverses.
Let f ∈ Hom(V,W ) and v ∈ V . Then,

(α ◦ β)(f)(v) = α(β(f))(v) =

n∑
i=1

α(v∗i ⊗ f(vi))(v) =
n∑
i=1

v∗i (v)f(vi) = f

(
n∑
i=1

v∗i (v)vi

)
= f(v)

In particular, α ◦ β = 1Hom(V,W ). Also, for any v ∈ V ,

(β ◦ α)(v∗i ⊗ wj) = β(α(v∗i ⊗ wj)) =
n∑
k=1

v∗k ⊗ α(v∗i ⊗ wj)(vk) =
n∑
k=1

v∗k ⊗ v∗i (vk)wj = v∗i ⊗ wj

So β ◦ α = 1V ∗⊗W as each basis element is sent to the identity. Finally, to show that α is a
homomorphism of kG-modules, as we know α is k-linear, it suffices to show G-equivariance. Taking
any g ∈ G, f ∈ V ∗, w ∈W , we have

α(g · (f ⊗ w))(v) = α((g · f)⊗ (g · w))(v)
= (g · f)(v)(g · w)
= f(g−1 · v)(g · w)
= g · (f(g−1 · v)w)
= g · α(f ⊗ w)(g−1 · v)
= (g · α(f ⊗ w))(v)

where the last line is an equality based on the homomorphism action induced by kG module actions
on V and W .
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Definition 20.0.8. Suppose that char(k) ̸= 2 and let V be a finite dimensional vector space.

• For each v, w ∈ V , define

vw :=
1

2
(v ⊗ w + w ⊗ v) ∈ V ⊗ V

Then, the symmetric square of V is the subspace of V ⊗ V given by

S2V := ⟨{vw | v, w ∈ V }⟩

• For each v, w ∈ V , define

v ∧ w :=
1

2
(v ⊗ w − w ⊗ v) ∈ V ⊗ V

The alternating square of V is the subspace of V ⊗ V defined by∧2
V := ⟨{v ∧ w | v, w ∈ V }⟩

Note that vw = wv in S2V and that v ∧ w = −w ∧ v in
∧2 V for all v, w ∈ V .

Lemma 20.0.9. Let dimV = n and suppose that char(k) ̸= 2. Then,

1. V ⊗ V = S2V ⊕
∧2 V

2. dimS2V = n(n+1)
2 and dim

∧2V = n(n−1)
2

3. If V is a G-representation, then so are S2V and
∧2 V via the actions

g · (vw) = (g · v)(g · w)g · (v ∧ w) = (g · v) ∧ (g · w)

for all g ∈ G, v,w ∈ V .

Proof. (i) Let S2 := ⟨σ⟩ be the cyclic group of order 2. Since char(k) ̸= 2, the group ring kS2
admits orthogonal idempotents e1 := 1+σ

2 ∈ kS2 and e2 := 1−σ
2 ∈ kS2, which gives rise to the

decomposition
kS2 = kS2e1 ⊕ kS2e2 = ke1 ⊕ ke2

by Lemma 19.1.2, where the last equality then follows from the fact σe1 = e1 and σe2 = −e2. Thus,
every kS2-module M admits an even-odd decomposition

M = e1M ⊕ e2M = {m ∈M | σm = m} ⊕ {m ∈M | σm = −m}

Now, S2 acts linearly on V ⊗ V by
σ · (v ⊗ w) = w ⊗ v

Then S2V = e1 · (V ⊗ V ) is the even part of V ⊗ V and
∧2 V = e2 · (V ⊗ V ) is the odd part of

V ⊗ V . Then the even-odd decomposition gives V ⊗ V = S2V ⊕
∧2 V .

(ii) If {v1, . . . , vn} is a basis for V , then {vi ⊗ vj | 1 ≤ i, j ≤ n} spans V ⊗ V , so {e1 · (vi ⊗ vj)}
spans S2V . Now, e1 · (vi ⊗ vj) = vivj = vjvi, so {vivj} span S2V . Hence,

dimS2V ≤ n(n+ 1)

2
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Similarly, e2 · (vi ⊗ vj) = vi ∧ vj spans
∧2 V , and therefore

dim
∧2

V ≤ n(n− 1)

2

On the other hand, dimV ⊗ V = n2, so decomposition implies the result.
(iii) We have two groups G and S2 acting on V ⊗ V . Now,

σ · (g · (v ⊗ w)) = σ(g · v ⊗ g · w) = g · w ⊗ g · v = g · (w ⊗ v) = g · (σ · (v ⊗ w))

for any v, w ∈ V and g ∈ G. Hence, these actions commute pointwise, and so the actions preserve
S2V and

∧2 V . Hence these submodules inherit a linear G-action from V ⊗ V as claimed.

Remark 20.0.10. This idea extends to finding proper kG-submodules to the tensor V ⊗n as a direct
sum of kG-submodules Sλ(V ), one for each irreducible representation λ of the symmetric group Sn.
This construction V 7→ Sλ(V ) is called the Schur Functor.

Corollary 20.0.11. Suppose char(k) ̸= 2 and V be a G-representation. The square tensor V ⊗ V
is reducible when dimV ≥ 2.

Proof. By Lemma 20.0.9, V ⊗ V decomposes as S2V ⊕
∧2 V , and these are both nontrivial by part

(ii) of the Lemma. S2V and
∧2 V are both G-representations by (iii).

Lemma 20.0.12. Let V be a finite dimensional kG-module. Let W be a one-dimensional kG-
module. Then, V ⊗W is simple if and only if V is simple.

Proof. First note that W ⊗W ∗ ∼= k, as

g · (w ⊗ w∗) = (g · w)⊗ (g · w∗) = χ(g)w ⊗ χ(g)−1w∗ = 1 · (w ⊗ w∗)

Hence the group elements act trivially, and so in particular W ⊗W ∗ ∼= k.
Hence it suffices to show one direction, as then we can use the congruence V ∼= V ⊗ (W ⊗W ∗).
Suppose that V ⊗W is simple. Suppose for a contradiction that V is not simple. Then we have

a nonzero proper kG-module U of V . Let BU = {u1, . . . , uk} be a basis for U and extend it to a
basis BV of V . Let {w} be a basis for the one dimensional space W . Then,

g · (u⊗ w) = g · u︸︷︷︸
∈U

⊗ g · w︸︷︷︸
∈U

∈ U ⊗W

Hence U ⊗W is a proper G-stable subspace of V ⊗W , hence a kG module, a contradiction. Thus
V is simple.

Proposition 20.0.13. Let V be a finite dimensional kG-module. Then, V is simple if and only if
V ∗ is simple.

Proof. Note that it suffices to show ⇒, as V ∗∗ ∼= V . Suppose that V is simple. Take U ⊆ V ∗ be a
nonzero kG-module. Tqking the annihilator of U , this is a G-stable subspace of V . As V is simple,
noting Ann(U) = V , we have U = 0 or Ann(U) = 0. The first case is ruled out by the fact U ̸= 0,
so Ann(U) = 0.

Now, the proof follows from the fact

U ∼= Homk(V/Ann(U), k) ∼= Homk(V, k) ∼= V ∗
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21 Character Theory

21.1 Definitions and Basic Properties

Definition 21.1.1. Let ρ : G → GL(V ) be a complex representation of G. The character of ρ is
the function

χρ : G→ C g 7→ tr(ρ(g))

The degree of a character χρ is the degree of the representation ρ.
We write χV to denote the character of the representation afforded by a CG-module V , when the

CG-module structure on V is understood.

Remark 21.1.2. Note that the character χV only depends on the isomorphism class of the CG-
module V , and the isomorphism class of the representation ρ. TODO!! more?

Definition 21.1.3. A function f : G → C is said to be a class function if it is constant on the
conjugacy classes of G. That is,

f(xgx−1) = f(g)

for all g, x ∈ G. We denote the space of all class functions on G by C(G).

Note that C(G) is a commutative ring via pointwise multiplication of functions.

Lemma 21.1.4. The character χV of any finite dimensional kG-module V is a class function.

Proof. If ρ : G → GL(V ) is the corresponding representation, then the linear endomorphism ρ(g)
of V is conjugate to ρ(xgx−1) in GL(V ). But the conjugate linear maps have the same trace, as

tr(ABA−1) = tr((AB)A−1) = tr(A−1(AB)) = tr(B)

for any A,B ∈ GL(V ).

Proposition 21.1.5. Let G be a finite group and let V,W be finite dimensional CG-modules. Then
we have the following equalities in C(G):

1. χV ∗ = χV

2. χV⊕W = χV + χW

3. χV⊗W = χV χW

4. χHom(V,W ) = χV χW

5. χS2V (g) =
1
2(χV (g)

2 + χV (g
2)) for all g ∈ G

6. χ∧2 V (g) =
1
2(χV (g)

2 − χV (g2)) for all g ∈ G.

Proof. Fix g ∈ G. The action gV ∈ GL(V ) of g on V is diagonalizable. Fix a basis of gV -eigenvectors
{v1, . . . , vn} for V with corresponding eigenvalues λ1, . . . , λn, and fix a basis of gW -eigenvectors
{w1, . . . , wm} for W with eigenvalues µ1, . . . , µm. Then,

χV (g) = tr(gV ) =
n∑
i=1

λi χW (g) = tr(gW ) =
m∑
j=1

µj
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(i) Let {v∗1, . . . , v∗n} be the dual basis for V ∗ relative to {v1, . . . , vn}. Then,

(g · v∗i )(vj) = v∗i (g
−1 · vj) = v∗i (λ

−1
j vj) = λ−1

j δij = (λ−1
i v∗i )(vj)

where the last line equality follows from the fact tht given equation is 0 unless i = j. Hence,

g · v∗i = λ−1
i v∗i

for all i = 1, . . . , n. On the other hand, as λi is a root of unity, we have g · v∗i = λiv
∗
i , thus

χV ∗(g) = tr(gV ∗) =
n∑
i=1

λi = tr(gV ) = χV (g)

(ii) The action is defined by

gV⊕W =

(
gV 0
0 gW

)
so the trace is exactly the sum of traces.

(iii) By definition, the elementary tensors form a basis for V ⊗W . We note

g · (vi ⊗ wj) = (g · vi)⊗ (g · wj) = (λivi)⊗ (µjwj) = λiµj(vi ⊗ wj)

In particular, the elementary tensors form a basis of eigenvectors for the g-action on V ⊗W with
eigenvalue λiµj . Hence,

χV⊗W (g) =
n∑
i=1

m∑
j=1

λiµj =

(
n∑
i=1

λi

) m∑
j=1

µj

 = χV (g)χW (g)

(iv) We note the isomorphism V ∗ ⊗W ∼= Hom(V,W ), hence

χHom(V,W ) = χV ∗⊗W = χV ∗χW = χV χW

(v) Noting that vivj is a basis for S2V , we compute

g · (vivj) = (g · vi)(g · vj) = (λivi)(λjvj) =
1

2
(λivi ⊗ λjvj + λjvj ⊗ λivi) = λiλjvivj

In particular, the set {vivj | 1 ≤ i ≤ j ≤ n} form an eigenbasis for S2V , thus

χS2V (g) =
∑

1≤i≤j≤n
λiλj =

∑
1≤i<j≤n

λiλj +
∑
i

λ2i =
1

2

(∑
i

λi

)2

+
1

2

∑
i

λ2i =
1

2
χV (g)

2 +
1

2
χV (g

2)

(vi) By the same reasoning from (v), the set {vi ∧ vj | 1 ≤ i < j ≤ n} form an eigenbasis for∧2 V . Expanding,

χ∧2 V (g) =
∑

1≤i<j≤n
λiλj =

1

2

(∑
i

λi

)2

− 1

2

∑
i

λ2i = χV (g)
2 − χV (g2)
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Definition 21.1.6. Let G be a finite group and let {g1, . . . , gs} be a set of representatives for the
conjugacy classes of G. Let V1, . . . , Vr be a complete list of representatives for the isomorphism
classes of simple CG-modules.

The character table of G is the r × s array with the (i, j)-th entry given by χVi(gj)

Remark 21.1.7. As r = rC(G) and s = s(G), the character table is always square. Also, χ(1) =
tr(IdV ) = dimV .

Proposition 21.1.8. Let ρ : G→ GL(V ) be a finite dimensional representation. Then,

• χV (g) = χV (1) if and only if ρ(g) = 1

• If dimV = 1 then χ is a group homomorphism.

Proof. (i)⇒ If χV (g) = χV (1) = dimV , then we note by the finite order of G that ρ(g)m = ρ(gm) =
ρ(1) = IV for some m. Hence ρ(g) satisfies the polynomial Xm − I = 0, hence the eigenvalues of
ρ(g) satisfy λm = 1. In particular, |λ| = 1. As the trace is then the sum of these eigenvalues which
equals dimV , by the triangle inequality we must have λ = 1 for any eigenvalue. In particular,
ρ(g) = IV .
⇐ If ρ(g) = 1, then we have

χV (g) = tr(1) = dimV = χV (1)

(ii) If dimV = 1, then χ(g) = ρ(g), so the proof follows immediately from the fact ρ is a group
homomorphism.

Lemma 21.1.9. Suppose that k is algebraically closed.

1. Suppose further that G is abelian. Every smiple kG-module is one-dimensional.

2. The converse of the above holds provided that |G| ≠ 0 in k.

Proposition 21.1.10. Let χ be a character of G. Then χ(g−1) = χ(g) for all g ∈ G.

Proposition 21.1.11. Let g ∈ G. Then the following are equivalent:

1. g is conjugate to g−1

2. for every character χ of G, we have χ(g) ∈ R.

Definition 21.1.12. Characters of degree 1 are called linear characters.

Proposition 21.1.13. Let χ1, . . . , χr be the complete list of characters of the irreducible complex
representations of the finite group G. Then,

χ1(1)
2 + · · ·+ χr(1)

2 = |G|

Proof. Suppose that the simple kG-module Vi affords the character χi. Then, χi(1) = dimVi, thus
the proof follows by Artin Weddernburn.

Definition 21.1.14. Let N be a normal subgroup of the finite group G and let ρ : G/N → GL(V )
be a representation. The inflated representation of G,

ρ̇ : G→ GL(V )

is defined by ρ̇ := ρ(gN) for all g ∈ G.
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Definition 21.1.15. Let G be a finite group. The derived subgroup G′ is the subgroup of G
generated by all commutators [x, y] := xyx−1y−1 in G, such that

G′ := ⟨xyx−1y−1 | x, y ∈ G⟩

Remark 21.1.16. The derived subgroup is a normal subgroup of G. The commutator also satisfies
[g, h]−1 = [g−1, h−1] and ϕ([g, h]) = [ϕ(g), ϕ(h)] where ϕ : G→ H is a group homomorphism.

Proposition 21.1.17. Suppose that N is a normal subgroup of G, and suppose further that G/N
is abelian. Then G′ is a normal subgroup of N .

Proof. If G/N is abelian, then we know that for any x, y ∈ G, we have xyN = (xN) · (yN) =
(yN) · (xN) = yxN . In particular, xyx−1y−1 ∈ N . Hence we have G′ ⊆ N , and as G′ is normal in
G, it is normal in N .

Proposition 21.1.18. Every group homomorphism from G to an abelian group A is trivial on the
commutator subgroup G′ and hence factors through G/G′

Proof. Let ϕ : G → A be a group homomorphism where A is abelian. Then every commutator in
A is equal to the identity, so every commutator [g, h] of G lies in kerϕ. In particular, G′ ≤ kerϕ.
Hence there is an induced map ϕ̃ : G/G′ → A by sending gG′ 7→ ϕ(g), such that ϕ factors as ϕ̃ ◦ qG′

where qG′ is the canonical quotient map.

Proposition 21.1.19. Suppose that G is abelian. Then every simple kG-module is one-dimensional.
The converse holds provided that |G| ≠ 0 in k.

Proof. Let V be a simple kG-module. Then we can find a nonzero vector v ∈ V . As k and G are
abelian, so is kG.

The action of every z ∈ Z(kG) = kG on V lies in EndkG(V ). As k is algebraically closed and
V is simple, by Schur’s Lemma, we have EndkG(V ) = k1V . As k · v ⊆ V is closed under actions
by scalars, it follows that k · v is a nonzero kG-submodule of V . As V is simple, we must have
V = k · v, which is one dimensional over k.

If |G| ≠ 0 in k, by Maschke’s Theorem, kG is semisimple, and there is a complete list V1, . . . , Vr
of representatives for the isomorphism classes of simple kG-modules. Hence by Artin Weddernburn,
we have kG ≃ MdimV1(k) × · · · ×MdimVr(k) as k-algebras. By assumption dimVi = 1 for all i, so
we have kG ≃ kn as a commutative ring. In particular G ≤ kG× ≃ (kn)× is abelian.

Lemma 21.1.20. Let G be a finite group. There is a bijective correspondence between complex
linear characters of G and irreducible complex characters of G/G′. Hence G has precisely |G : G′|
distinct complex linear characters.

Proof. Let χ be a complex linear character of G afforded by the complex representation ρ : G →
GL(V ). Then GL(V ) ∼= GL1(C) ∼= C×, which is abelian, thus ρ induces a representation ρ̃ : G/G′ →
GL(V ), such that ρ̃ ◦ qG′ = ρ. As dimV = 1, we have ρ̃ is irreducible, and thus χ descends to an
irreducible character χ̃ of G/G′ afforded by r̃ho with ρ̃ ◦ qG′ = χ.

On the other hand, suppose that ϕ is an irreducible complex character of G/G′ afforded by the
representation τ : G/G′ → GL(V ). As G/G′ is abelian and C is algebraically closed, the simple
C(G/G′)-module is 1-dimensional. Hence, the inflated representation τ̇ : G → GL(V ) is also of
degree 1, thus ϕ lifts to a linear character ϕ̇ of G afforded by ·τ .

The bijection comes from the fact χ = χ̃ ◦ π = ˙̃χ
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As G/G′ is abelian, |G/G′| = |G : G′| is the number of conjugacy classes of G/G′, which is the
number of isomorphism classes of simple C(G/G′)-modules, which is the number of complex linear
characters of G by correspondence.

Example 21.1.21. Let G = A4 be the alternating group of order 12. We know that V4 is a normal
subgroup of order 4, written

V4 := {1, (12)(34), (14)(23), (13)(24)}

Since A4/V4 has order 3, it must be a cyclic group of order 3, hence abelian. In particular, A′
4 ≤ V4,

forcing |A′
4| ∈ {1, 2, 4}. No subgroup of order 2 in V4 is normal in A4, and A′

4 is nontrivial as it is
not abelian, so it must be the case that A′

4 = V4. In particular, by Lemma 21.1.20, A4 admits 3
distinct linear characters inflated from A4/V4 ∼= C3.

Definition 21.1.22. Let G be a finite group. The inner product on class functions

⟨−,−⟩ : C(G)× C(G)→ C

is defined as

⟨ϕ, ψ⟩ := 1

|G|
∑
g∈G

ϕ(g)ψ(g)

Remark 21.1.23. It is routine to verify that this is a complex inner product on C(G), satisfying
our usual notions of sesquilinear, positive definite, and conjugate symmetry.

Proposition 21.1.24 (Fixed Point Formula). Let G be a finite group and let V be a finite dimen-
sional CG-module. Then

dimV G =
1

|G|
∑
g∈G

χV (g) = ⟨1, χV ⟩

Proof. Let e := 1
|G|
∑

g∈G g ∈ CG Then ge = eg = e fora all g ∈ G, so we have e2 = e. We call e to
be the principal idempotent of CG.

Now we have a decomposition

V = e · V ⊕ (1− e) · V

If g ∈ G, then g · (e · v) = (ge) · v = e · v so e ·V ≤ V G. On the other hand, if v ∈ V G, then g · v = v
for all g ∈ G, so |G|e · v =

∑
g∈G g · v = |G|v, giving v = e · v, hence v ∈ e · V . In particular,

e · V = V G.
The action of e ∈ CG on V is a linear map eV : V → V which is an idempotent with image

e · V . So, writing ρ : G→ GL(V ) for the representation afforded by V , we have

dimV G = dim e · V = tr(eV ) =
1

|G|
∑
g∈G

trρ(g) =
1

|G|
∑
g∈G

χV (g)

Proposition 21.1.25. Let V and W be finite dimensional CG-modules. Then,

1. HomCG(V,W ) = Hom(V,W )G
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2. ⟨χV , χW ⟩ = dimHomCG(V,W )

Proof. (i) Let f ∈ Hom(V,W ). Then f is fixed by the G-action if and only if

g · f(g−1 · v) = f(v)

for all g ∈ G and v ∈ V . In particular, we rewrite that

gW ◦ f = f ◦ gV

for all g ∈ G. By definition, this is exactly the functions finHomCG(V,W ).
(ii) Noting the Fixed Point Formula, we have

dimHom(V,W )G =
1

|G|
∑
g∈G

χHom(V,W )(g) =
1

|G|
∑
g∈G

χV (g)χW (g) = ⟨χV , χW ⟩

Theorem 21.1.26 (Row Orthogonality). Let ϕ and ψ be irreducible characters of the finite group
G. Then,

⟨ϕ, ψ⟩ =

{
1 if ϕ = ψ

0 if ϕ ̸= ψ

Proof. Let V and W be the simple CG-modules whose characters are ϕ = χV and ψ = χW . As V
and W are simple, if they are not isomorphic, the only map is the 0 map. If the two are isomorphic,
by Schur’s Lemma we have

dimHomCG(V,W ) = dimEndCG(V ) = 1

Hence,

dimHomCG(V,W ) =

{
1 if V ∼=W

0 if V ̸∼=W

Hence by Proposition 21.1.25,

⟨ϕ, ψ⟩ = ⟨χV , χW ⟩ = dimCGHom(V,W ) ∈ {0, 1}

Suppose that χV = χW . Then,

⟨χV , χW ⟩ = ||χV ||2 =
1

|G|
∑
g∈G
|χV (g)|2 ≥

(dimV )2

|G|
> 0

as χV (1) = dimV . Hence ⟨χV , χV ⟩ = 1. If χV ̸= χW , then V cannot be isomorphic to W as
isomorphic representations have the same characters, hence ⟨ϕ, ψ⟩ = dimHomCG(V,W ) = 0.

Remark 21.1.27. Let V be a finite dimensional kG-module,χ1, . . . , χr be the complete list of
characters of the irreducible complex representations of G, and suppose that Vi is the simple kG-
module with character χi. By Maschke’s Theorem, we know that V is a direct sum of simple
kG-modules. Since V1, . . . , Vr are the only possible simple kG-modules up to isomorphism, we can
find non-negative integers a1, . . . , ar such that

V ∼= V a1
1 ⊕ · · · ⊕ V

ar
r

We call ai the multiplicity of Vi in V .
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Corollary 21.1.28. Let V and W be two finite dimensional kG-modules. Then V is isomorphic to
W if and only if χV = χW .

Proof. Decompose V into simple kG-modules, such that

V ∼= V a1
1 ⊕ · · · ⊕ V

ar
r

Passing to characters, we have
χV = a1χ1 + · · ·+ arχr

Thus by row orthogonality, we can recover ai from χV by

⟨χi, χV ⟩ = ⟨χi,
r∑
j=

ajχj⟩ =
r∑
j=1

ajδij = ai

If χV = χW , decomposing W = V b1
1 ⊕ · · · ⊕ V br

r as a kG-module, then for any i, ai = ⟨χi, χV ⟩ =
⟨χi, χW ⟩ = bi. Hence V ∼=W . The converse is straightforward.

Corollary 21.1.29. The irreducible characters of G form an orthonormal basis for C(G).

Proof. By row orthogonality, the characters are pairwise orthogonal elements in the inner product
space C(G). On the other hand, dim C(G) = s(G) = rC = r, so {χ1, . . . , χr} form a basis for
C(G).

Theorem 21.1.30 (Column Orthogonality). Let G be a finite group. Let χ1, . . . , χr be the irre-
ducible characters of G and let g, h ∈ G. Then,

r∑
i=1

χi(g)χi(h) =

{
|CG(g)| if g is conjugate to h
0 otherwise

Proof. Let {g1, . . . , gr} be a complete list of representatives for the conjugacy classes of G. Suppose
that g ∈ gGj and h ∈ gGk for some j, k. As the characters χi are class functions, we will assume
without loss of generality that g = gj and h = gk.

Define
xi,j = χi(gj) · cj where cj :=

√
|gGj |/|G|

Then we can compute,

r∑
j=1

xi,jxk,j =

r∑
j=1

χi(gj)cjχk(gj)cj

=

r∑
j=1

χi(gj)χk(gj)c
2
j

=
1

|G|

r∑
j=1

|gGj |χi(gj)χk(gj)

=
1

|G|
∑
g∈G

χi(x)χk(x)

= ⟨χi, χk⟩ = δi,k
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Where the last line comes from row orthogonality. Hence the r × r matrix X := (xi,j) is unitary:

X ·XT = I

So X is the left-inverse (and the right-inverse) of XT in GLr(C). Applying complex conjugation,
we have

X
T ·X = I

In particular,

(X
T ·X)j,k =

r∑
i=1

xi,jxi,k =

r∑
i=1

χi(gj)cjχi(gk)ck = δj,k

Dividing both sides by cjck and taking j = k, we have 1/c2j = |G|/|gGj | = |CG(gj)|.

21.2 Examples of Character Table Computation

When the explicit representations are known, computing the character tends to be straightforward.

Example 21.2.1. The character table for the cyclic group of order 3, G = {1, x, x2} is where ω :=

1 x x2

1 1 1 1
χ 1 ω ω2

χ2 1 ω2 ω

exp(2πi/3) is a primitive cube root of unity. To see explicitly where these choices of representations
came from, note that we have ρ(g)3 = ρ(g3) = ρ(e) = 1, so we must have ρ(g) be sent to a primitive
cube root of unity, and this determines all possible representations.

Example 21.2.2. Let G = S3. Alongside the trivial character, we have a sign character ϵ : S3 →
{±1} ⊆ C× by

ϵ(σ) =

{
1 if σ is even
−1 if σ is odd

We also have the two-dimensional irreducible representation W of S3 from Example 18.0.18, we get
the character table of S3 as

1 (123) (12)

1 1 1 1
ϵ 1 1 −1
χW 2 -1 0

We can use inflation to find character tables as well.

Example 21.2.3. Let G = A4. Then A′
4 = V4, and G has 3 distinct linear characters. The

representatives for the conjugacy classes in A4 are 1, g2 := (12)(34), g3 := (123) and g4 := (132).
Hence noting there are 4 conjugacy classes, our character table for A4 looks as follows: where ω is
a primitive third root of unity. As the sum of squares on the identity class is |G| = 12, we deduce
that d2 = 3. This equals dimV ∈ N, so we get d = 3.
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g 1 g2 g3 g4

|gG| 1 3 4 4
|CG(g)| 12 4 3 3

χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω
χ4 d a b c

Now by row orthogonality, we get

0 = |G|⟨χ1, χ4⟩ =
∑
g∈G

χ1(g)χ4(g) = 1 · 1 · 3 + 3 · 1 · a+ 4 · 1 · b+ 4 · 1 · c = 3 + 3a+ 4b+ 4c

0 = |G|⟨χ2, χ4⟩ = 3 + 3a+ 4bω + 4cω2

0 = |G|⟨χ3, χ4⟩ = 3 + 3a+ 4bω2 + 4cω

Solving this gives a = −1, b = c = 0, so the full character table follows by substituting these
values.

Example 21.2.4. Let G be the symmetric group S4. The conjugacy class representatives are
g1 = 1, g2 = (12)(34), g3 = (123), g4 = (12), g5 = (1234), with conjugacy classes of sizes 1, 3, 8,
6, 6 respectively. We know that V4 ≤ S4 and S4/V4 ∼= S3. Hence, this gives irreducible characters
1̃, ϵ̃, χ̃W obtained by inflation from S3.

This gives a partial table:

g 1 g2 g3 g4 g5

|gG| 1 3 8 6 6
|CG(g)| 24 8 3 4 4

1̃ 1 1 1 1 1
ϵ̃ 1 1 1 -1 -1
χ̃W 2 2 -1 0 0
χ4 d4 α4 β4 γ4 δ4
χ5 d5 α5 β5 γ5 δ5

Now noting that d24 + d25 = 24 − 12 − 12 − 22 = 18, the only solutions with positive integers to
this is d4 = d5 = 3 by column orthogonality. By applying this again to the first pair of columns and
the second column, we obtain

1 + 1 + 4 + 3α4 + 3α5 = 0 12 + 12 + 22 + |α4|2 + |α5|2 = 8

Hence α4 + α5 = −2 and |α4|2 + |α5|2 = 2, which solves to α4 = α5 = −1.
Applying this to the third column we get

12 + 12 + (−1)2 + |β4|2 + |β5|2 = 3

Thus β4 = β5 = 0.
Similar considerations give γ5 = −γ4 and that |γ4| = 1. As g4 = (12) has order 2, it acts with

eigenvalues ±1 in any representation. Hence γ4 is the sum of these eigenvalues, and is a real number,
so the choices are γ4 = {1,−1}. Without loss of generality, we may assume that γ4 = 1, otherwise
swapping χ4 with χ5. Row orthogonality gives δ4 = −1 and δ5 = 1, completing our table.
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21.3 Burnside’s Theorem

Proposition 21.3.1. χ(g) is an algebraic integer for all g ∈ G.

Proof. χ(g) is a sum of ord-g-th roots of unity, why are all algebraic integers. These form a subring
of C

Lemma 21.3.2. Let G be a finite group and let C1, . . . , Cr be the conjugacy classes in G. Let S be
the additive subgroup of CG generated by the conjugacy class sums. Then S is a subring of Z(CG).

Proof. Sketch. Show stability under multiplication (as we know it is stable under addition.) (show
coef is the same in the same conjugacy class)

Theorem 21.3.3. Let V a simple CG-module with g ∈ G.

1. The conjugacy class sum ĝG acts on V by the scalar |gG|χV (g)
χV (1) ∈ C

2. The scalar above is an algebraic integer

Proof. As V is a simple CG-module and the conjugacy class sum z := ĝG is central in CG, it acts
by a scalar zV ∈ C on every simple CG-module by Schur’s Lemma. Taking the trace of this action,
we get

zV dimV = |gG|χV (g)

Hence (i) follows from the fact dimV = χ(1).
Now let ρ : G → GL(V ) be the representation afforded by V . Then ρ extends to a C-algebra

homomorphism ρ̃ : CG → End(V ). The restriction of this homomorphism to the center is the
central character of V , so ρ̃(CG) ⊆ C. Hence ρ̃(S) is a finitely generated abelian subgroup of
C. It is also a subring of C as ρ̃ is a ring homomorphism and S is a subring of Z(CG). Hence
zV · ρ̃(S) ⊆ ρ̃(S).

Corollary 21.3.4. If V is a simple CG-module, then dimV divides |G|.

Proof. By row orthogonality, ∑
i

χV (g
−1)
|gGi |χV (gi)
χV (1)

=
|G|
χV (1)

Now the left side is an algebraic integer, and the right side shows it is a rational number. Hence
this is an integer.

Definition 21.3.5. Let G be a finite group and let p be a prime. Write |G| = pαm where p ∤ m A
sylow p-subgroup of G is a subgroup P of G order pα.

Theorem 21.3.6 (Sylow). Let G be a finite group.

1. G contains at least one Sylow p-subgroup.

2. Any two sylow p-subgroups are conjugate in G

3. The number of Sylow p-subgroups of G is congruent to 1 mod p, and this number divides
m = |G|/pα.

Lemma 21.3.7. Let G be a group of order pαqβ where p and q are distinct primes with α, β ≥ 1.
Let g be a central element of a Sylow p-subgroup P of G. Then |gG| is a power of q.
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Proof. As P centralises g, we have P ≤ CG(g). Hence |G : CG(g)| divides |G|/|P | = qβ . However,
this index equals |gG|.

Lemma 21.3.8. Let α = ζ1+···+ζn
n be sums of roots of unity, and α is an algebraic integer. Then

either α = 0 or α = ζ1 = · · · = ζn.

Theorem 21.3.9. Let G be a finite group and suppose that the size of a conjugacy class of a non
central element g ∈ g is a power of q. Then G is not a simple group.

Corollary 21.3.10 (Burnside). Let G be a non-abelian group of order pαqβ where p, q are primes.
Then G is not a simple group.

21.4 Module vs Representation

Example 21.4.1. Consider the representation ρ : Z→ GL(V ) via the extension of n 7→ (M 7→Mn).
Then,

kZ = ⊕n∈ZkTn = k[T, T−1]

• ρ : G→ GL(V )↔ kG-module V

• ρ completely reducible ↔ kG is completely reducible

• subrepresentations correspond exactly to submodules

• If V = U ⊕W (subreps) correspond

• semisimple (kG as a kG module is completely reducible)

• Noting that V ∗ ⊗ V ∼= End(V ), the left ideals of End(V ) (are of the form U ⊗ V , U ⊆ V ∗)
correspond to subspaces of V ∗.

Example 21.4.2. Let G = C3 = ⟨x⟩. Suppose that char(k) ̸= 3 and that k contains a primitive
cube root of unity.

Then, kG is generated by kx, with the two commuting with each other. Thus, we have a
surjective evaluation homomorphism from k[t] ↠ kG sending t 7→ x. Now by the first isomorphism
theorem, kerϕ = (t3 − 1). This induces an isomorphism

kC3
∼= k[t]/(t3 − 1) ∼= k[t]/(t− 1)× k[t]/(t− ω)× k[t]/(t− ω2)

by the chinese remainder theorem.

Lemma 21.4.3. Let χ be a character of G. The set N := {g ∈ G | χ(g) = χ(1)} is a normal
subgroup of G, and is exactly the kernel of the representation.

Proof. Let χ be a character of the complex representation ρ : G → GL(V ). If g ∈ N , ρ(g)
is diagonalizable, so we can find a basis of ρ(g)-eigenvectors {v1, . . . , vn} for V with eigenvalues
λ1, . . . , λn where each λi is a order-g-th root of unity. Now,

χ(g) = trρ(g) = λ1 + · · ·+ λn = n

The argument then follows by Cauchy-Schwarz.

Proposition 21.4.4. G is simple if and only if χ(g) ̸= χ(1) for all g ̸= 1 and every irreducible
χ ̸= 1.
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Proof. ⇒

Proposition 21.4.5. Let χ be a character of G. χ(g−1) = χ(g) for all g ∈ G.

Proof. Sketch. Take the eigenvalues, these are on roots of unity, the inverse forms a set of χ(g−1),
the inverse is the conjugate.

Proposition 21.4.6. g ∈ G is conjugate to g−1 if and only if χ(g) ∈ R for every character χ of G.

Proof. (⇒) Characters are class functions so χ(g−1) = χ(g) = χ(g) ∈ R.
(⇐) If all χi ∈ R for irreducible characters but g is not conjugate to g−1, by column orthogonality,

we have
0 =

∑
i

χi(g−1)χi(g) =
∑
i

χi(g)
2

As each component is real, this forces χi(g) = 0. On the other hand by column orthogonality on
itself,

0 =
∑
i

χi(g)χi(g) = |CG(g)| ≥ 1

Hence a contradiction, showing that g is conjugate to g−1.

Proposition 21.4.7. The following things can be found from the character table:

• |G|

• |G : G′| thus also |G′|

• |Z(G)|

Proof. Note first that |G| =
∑

i χi(1)
2 and that |G : G′| = |{i | χi(1) = 1}|, and we use these to

find |G′| = |G|/|G : G′|.
Finally, elements in the center are exactly those with trivial conjugacy classes, hence g is in

the center if and only if CG(g) = G. By column orthogonality, this is exactly when
∑

i |χi(g)|2 =
|CG(g)| = |G| by column orthogonality. This gives an explicit method to compute the size of the
center.

22 Techniques

22.0.1 Computing Conjugacy Classes

1. By the orbit stabilizer, we always have |gG||CG(g)| = |G|

2. The elements in the center each form their own conjugacy class. Then we can use the fact
|G| = |Z(G)|+

∑
|Ci|

3. For Sn, use cycle-type analysis

4. Normal subgroups are unions of conjugacy classes

22.0.2 Finding Characters

1.
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22.1 Definitions

Definition 22.1.1. Let X be a space and let u and v be paths such that u(1) = v(0). The composite
path u.v is given by

u.v(t) =

{
u(2t) if 0 ≤ t ≤ 1

2

v(2t− 1) if 1
2 ≤ t ≤ 1

23 Graph

Note to self: we only contain notes about graphs that are important from a topological perspective,
and less from a number theory / algorithm perspective.

23.1 Definitions

Definition 23.1.1. A countable graph Γ is specified by

• A finite or countable set V of vertices

• A finite or countable set E of edges

• A function δ which sends an edge e to a subset of V with either 1 or 2 elements. δ(e) is known
as endpoints of e.

We can construct an associated topological space, or the graph Γ as follows. Take a disjoint
union of points corresponding to vertices, and a disjoint union of copies of the interval I correspond-
ing to edges. For each e ∈ E, identity 0 in the associated copy of I with one vertex in δ(e) and 1
with the other vertex of δ(e).

Definition 23.1.2. An orientation on the graph Γ is a choice of functions ι : E → V and
π : E → V such that for each e ∈ E, δ(e) = {ι(e), π(e)}. We say that ι(e) and π(e) are intial
and terminal vertices of the edge e, and we view the edge as running from the intial vertex to the
terminal vertex (in a directed sense).

Definition 23.1.3. Let Γ be a graph with vertex set V , edge set E, and endpoint function δ. A
subgraph of Γ is the vertex set V ′ ⊆ V and edge set E′ ⊆ E with the endpoint function being the
restriction of δ. To be well-defined, we need for each e ∈ E′, δ(e) ⊆ V ′. If Γ is oriented, then the
subgraph inherits the orientation.

Definition 23.1.4. An edge path in a graph Γ is a concatenation u1 . . . un where each ui is either
a path running along a single edge at unit speed, or a constant path based at a vertex.

A edge loop is an edge path u : I → Γ where u(0) = u(1).
An edge path (respectively, edge loop) is said to be embedded if u is injective (respectively, if

the only points in I with the same image under u are 0 and 1).

23.2 Tree

Definition 23.2.1. A tree is a connected graph that contains no embedded edge loops.

Lemma 23.2.2. In a tree, there is a unique embedded edge path between distinct vertices.
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Proof. Any two distinct vertices are connected by an edge path, since the tree is connected. A
shortest such path is embedded. We wish to show that this is unique.

Suppose for a contradiction there are two distinct embedded edge paths p = u1 . . . un and
p′ = u′1 . . . u

′
n, between a distinct pair of vertices. Let ui(0) be the point on p where the paths first

diverge. Let uj(1) be the next point on p which lies in the image of p′. Then the concatenation of
ui . . . uj with the sub-arc of p′ between uj(1) and ui(0) form an embedded edge loop, a contradiction
on the assumption that we have a tree.

Definition 23.2.3. A maximal tree in a connected graph Γ is a subgraph T that is a tree, but any
addition of any edge E(Γ) \ E(T ) to T gives a graph that is not a tree.

Lemma 23.2.4. Let Γ be a connected graph and let T be a subgraph that is a tree. Then the
following are equivalent :

1. V (T ) = V (Γ)

2. T is maximal

Proof. (i)⇒ (ii) Let e be an edge of E(Γ) \ E(T ). If the endpoints of e are the same vertex, then
adding e to T gives a subgraph that is not a tree, as it contains an embedded edge loop. Without
loss of generality, assume the endpoints of d are distinct. They lie in T , as V (T ) = V (Γ). They are
connected by an embedded edge path p in T by Lemma 23.2.2. Now, p ∪ e is an embedded loop in
T ∪ e, thus is not a tree.

(ii) ⇒ (i) Suppose that T is a maximal tree and there is a vertex v of Γ that is not in V (T ).
Pick a shortest edge path from T to v, which exists as Γ is connected. The first edge of this path
starts in V (T ) but cannot end in V (T ). We can therefore add this to T to create a larger tree,
which contradicts maximality.

Lemma 23.2.5. Any connected graph Γ contains a maximal tree.

Proof. By definition, V (Γ) is finite or countable. We can therefore choose a total ordering on V (Γ).
Without loss of generality, we may assume that for each i ≥ 2, the i-th vertex shares an edge with
an earlier vertex. We construct a nested sequence of subgraphs T1 ⊊ T2 ⊊ · · · of trees where V (Ti)
is the first i vertices up to the ordering.

Set T1 to be the first vertex. By assumption, there is an edge e joining the i-th vertex to one
of the previous vertices, so we can set Ti = Ti−1 ∪ e. There are no new embedded edge loops, so
inductively any Ti is a tree.

We claim that T =
⋃
i Ti is a tree. Suppose that it contains an embedded edge loop ℓ. Then, as ℓ

consists of finitely many edges, they must all appear in Ti, but then Ti is not a tree, a contradiction.
As T contains all the vertices of Γ, it is maximal by Lemma 23.2.4.

23.3 Cayley Graphs

Definition 23.3.1. Let G be a group and let S be a set of generators for G. The associated Cayley
Graph is an oriented graph with vertex set G and edge set G×S. Eah edge is associated with a pair
(g, s) where g ∈ G and s ∈ S. The functions ι and π are specified by ι(g, s) = g and π(g, s) = gs.
We say that this edge is labelled by the generator s.

The Cayley graph of a group depends on a choice of generators. We also note that any two
points in a Cayley graph can be joined by a path. Conversely, given any path from the identity
to the g vertex, we can write g as a product of generators and their inverses. We therefore have a
correspondence between closed loops starting at the identity and ways of writing the identity.
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24 Topological Structures

24.1 Simplicial Complexes

Definition 24.1.1. The standard n-simplex is the set

∆n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0, ∀i
∑
i

xi = 1}

The non-negative integer n is the dimension of the simplex. The vertices denoted V (∆n) are
points (x0, . . . , xn) in ∆n such that xi = 1 for some i. For each non-empty subset A of {0, . . . , n},
there is a face of ∆n which is

{(x0, . . . , xn) ∈ ∆n | xi = 0 ∀i /∈ A}

Note that ∆n is a face of itself. The inside of ∆n is

inside(∆n) = {(x0, . . . , xn) ∈ ∆n | xi > 0∀i}

Note that the inside of ∆0 is ∆0.

We note that V (∆n) is a basis for Rn+1. Thus any function f : V (∆n) → Rm extends to a
unique linear map Rn+1 → Rm. The restriction of this to ∆n is known as the affine extension of
f , or just called affine.

Definition 24.1.2. A face inclusion of a standard m-simplex into a standard n-simplex where
m < n is the affine extension of an injection V (∆m)→ V (∆n).

Definition 24.1.3. An abstract simplicial complex is a pair (V,Σ) where V is a set of vertices
and Σ is a set of non-empty finite subsets of V called simplices such that

• For each v ∈ V , {v} ∈ Σ

• If σ ∈ Σ, any nonempty subset of σ is also in Σ.

We say that (V,Σ) is finite if V is a finite set.

Definition 24.1.4. The topological realisation |K| of an abstract simplicial complex K = (V,Σ)
is the space obtained by the following procedure:

1. For each σ ∈ Σ, take a copy of the standard n-simplex, where n+1 is the number of elements
of σ. Denote this simplex ∆σ, labelling its vertices with elements of σ

2. Whenever σ ⊊ π ∈ Σ, identify ∆σ with a subset of ∆π via face inclusion that sends elements
of σ to corresponding elements of π.

Equivalently, it is the quotient space obtained by a disjoint union of simplices in (i) and imposing
the equivalence in (ii).

Any point x ∈ |K| lies inside a unique simplex σ = (v0, . . . , vn). Thus it can be expressed as

x =
n∑
i=0

λivi

for unique positive numbers λ0, . . . , λn that sum to 1. If V = {w0, . . . , wm}, we write x =
∑
µiwi

taking µi = 0 if wi /∈ {v0, . . . , vn}. If |K| is the topological realisation of an abstract simplicial
complex K, we denote the images of the vertices in |K| by V (|K|).

Note that when we refer to a simplicial complex, we mean either the abstract simplicial
complex or its topological realisation.
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Definition 24.1.5. A triangulation of a space X is a simplicial complex K with a choice of
homeomorphism |K| → X.

Example 24.1.6. The torus S1 × S1 has a triangulation using nine vertices, using the standard
grid.

Definition 24.1.7. A subcomplex of a simplicial complex (V,Σ) is a simplicial complex (V ′,Σ′)
such that V ′ ⊆ V and Σ′ ⊆ Σ.

Definition 24.1.8. A simplicial map between abstract simplicial complexes between (V1,Σ1) and
(V2,Σ2) is a function f : V1 → V2 such that for all σ1 ∈ Σ1, f(σ1) = σ2 for some σ2 ∈ Σ2. It is a
simplicial isomorphism if it has a simplicial inverse.

Note that this map need not be injective, thus may decrease the dimension of a simplex.

Proposition 24.1.9. A simplicial map f between abstract simplicial complexes K1 and K2 induces
a continuous map |f | : |K1| → |K2|.

Proof. Define |f | on V (|K1|) according to f , extending to each simplex using the unique affine
extension.

This map is also called a simplicial map. Note also that this map is determined by the image of
its vertices, and is uniquely determined from there.

Definition 24.1.10. A subdivision of a simplicial complex K is a simplicial complex K ′ with a
homeomorphism h : |K ′| → |K| such that for any simplex σ′ of K ′, h(σ′) lies entirely in a simplex
of |K| and the restriction of h to σ′ is affine (linearity on convex combinations).

Example 24.1.11. Let K be the triangulation of I × I with a single diagonal from the top left
to bottom right. For any positive integer r, let K ′ be the triangulation of I × I by dividing I × I
tinto a lattice of r2 congruent squares, dividing each along the diagonal that runs from top left to
bottom right. Then K ′ is a subdivision of K. We write (I × I)(r) for this.

Definition 24.1.12. Let K be a simplicial complex. An edge path is a finite sequence (a0, . . . , an)
of vertices of K such that for each i, {ai−1, ai} spans a simplex of K. The length of the path is n.

An edge loop is an edge path with an = a0. We define concatenation of edge paths in the
standard way.

24.2 Cell complexes

Definition 24.2.1. Let X be a space, and f : Sn−1 → X be a map. The space obtained by attaching
an n-cell to X along f is defined to be the quotient of the disjoint union X ⊔Dn such that for each
point x ∈ X, f−1(x) and x are all identified to a point. We denote this by X ∪f Dn.

Remark 24.2.2. There is a homeomorphic image of both X and the interior of Dn in X ∪f Dn by
the natural map. There is an induced map from Dn → X ∪f Dn but this need not be injective, as
the points in the boundary of Dn may be identified.

Definition 24.2.3. A (finite) cell complex is a space X decomposed as

K0 ⊊ K1 ⊊ · · · ⊊ Kn = X

where
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1. K0 is a finite set of points

2. Ki is obtained from Ki−1 by attaching a finite collection of i-cells.

Example 24.2.4. A finite graph is precisely a finite cell complex that consists only of 0-cells and
1-cells.

Remark 24.2.5. Any finite simplicial complex is a finite cell complex by letting each n simplex be
an n-cell.

Example 24.2.6. The torus S1 × S1 has a cell structure with one 0-cell, two 1-cells and a single
2-cell. Viewing K1 as a graph, give its two edges an orientation, labelling them a and b. The
attaching map f : S1 → K1 of the 2-cell sends the circle along the path aba−1b−1.

25 Homotopy

25.1 Basic Definitions and Properties

Definition 25.1.1. A homotopy between two maps f, g : X → Y is a map H : X × I → Y such
that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. We say that f, g are homotopic and write

f ≃ g or H : f ≃ g, or f
H≃ g.

Example 25.1.2. Suppose that Y is a subset of Rn that is convex. Then for any two maps
f, g : X → Y are homotopic by

(x, t) 7→ (1− t)f(x) + tg(x)

This is known as the straight-line homotopy.

Lemma 25.1.3 (Gluing Lemma). If {C1, . . . , Cn} is a finite covering of a space X by closed subsets
and f : X → Y is a function whose restriction to each Ci is continuous, then f is continuous.

Proof. The map f is continuous if and only if f−1(C) is closed for each closed subset of Y . But
f−1(C) =

⋃n
i=1 f

−1(C) ∩ Ci, which is a finite union of closed sets, thus closed.

Lemma 25.1.4. For any two spaces X and Y , homotopy is an equivalence relation of continuous
maps X → Y .

Proof. Reflexive: for any f : X → Y , H : f ≃ f by H(x, t) = f(x).
Symmetric: if H : f ≃ g, then H̄ : g ≃ f where H̄(x, t) = H(x, 1− t).
Transitive: if H : f ≃ g and K : g ≃ h, then L : f ≃ h via

L(x, t) =

{
H(x, 2t) if 0 ≤ t ≤ 1

2

K(x, 2t− 1) if 1
2 ≤ t ≤ 1

L is continuous by the gluing lemma.

Remark 25.1.5. If we take X to be a single point, the continuous maps X → Y are points of
Y , thus homotopies between them are paths. So the relation of being connected by a path is an
equivalence relation on Y . These equivalence classes are called path-components of Y . If Y has
a single path-component, we call is path-connected.

138



Lemma 25.1.6. Given the following continuous maps :

W X Y Z
f

h

g
k

If g ≃ h, then gf ≃ hf and kg ≃ kh.

Proof. Let H be the homotopy between g and h. Then k ◦H : X × I → Z is a homotopy between
kg and kh.

Similarly, H ◦ (f × idI) :W × I → Y is a homotopy between gf and hf .

Definition 25.1.7. Two spaces X and Y are homotopy equivalent written X ≃ Y if there are
maps

X Y
f

g

such that gf ≃ idX and fg ≃ idY .

Lemma 25.1.8. Homotopy equivalence is an equivalence relation on spaces.

Proof. Reflexivity and symmetry are straightforward. For transitivity, consider the following maps:

X Y Z
f

g

h

k

where fg, gf, hk, kh are all homotopic to the relavant identity map. Then by Lemma 25.1.6, gkhf ≃
g(idY )f = gf ≃ idX . So, (gk)(hf) ≃ idX , and similarly (hf)(gk) ≃ idZ .

Definition 25.1.9. A space X is contractible if it is homotopy equivalent to the space with one
point.

There is a unique map X → {∗} and any map {∗} → X sends ∗ to some point x ∈ X. Then
{∗} → X → {∗} is the identity, and X → {∗} → X is the constant map cx. Hence X is contractible
if and only if idX ≃ cx for some x ∈ X.

Example 25.1.10. If X is a convex subspace of Rn, then for any x ∈ X, cx ≃ idX by the straight-
line homotopy. Hence X is contractible. In particular, Rn and Dn are both contractible.

Definition 25.1.11. When A is a subspace of a space X and ι : A → X is the inclusion map, we
say that a map r : X → A such that ri = idA and ir ≃ idX is a homotopy retract. In these
circumstances, A and X are homotopy equivalent.

Example 25.1.12. Let ι : Sn−1 → Rn\{0} be the inclusion map, and define

r(x) = x/|x|

Then ri = idSn−1 and H : ir ≃ idRn\{0} by

H(x, t) = tx+ (1− t)x/|x|

This is well-defined as the straight line between x and x/|x| does not go through the origin.
Thus r is a homotopy retract and our equivalence follows.
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Example 25.1.13. Let M denote the Möbius band. There is an inclusion map ι : S1 →M sending
e2πix to (x, 12). There is a retraction map sending (x, y) 7→ (x, 12). Then r is a homotopy retract via
the straight-line homotopy.

Similarly, S1 × {12} is a homotopy retract of S1 × I. Hence M ≃ S1 ≃ S1 × I.

Definition 25.1.14. let X and Y be spaces and let A be a subspaces of X. Then two maps
f, g : X → Y are homotopic relative to A if f |A = g|A and there is a homotopy H : f ≃ g such
that H(x, t) = f(x) = g(x) for all x ∈ A and t ∈ I.

Remark 25.1.15. With a similar notion to homotopy equivalence, there is closure under compo-
sition and is an equivalence relation. (Proof is similar.)

25.2 The Simplicial Approximation Theorem

Definition 25.2.1. Let K be a simplicial complex, and let x be a point in |K|. The star of x in
|K| is the following subset of |K|,

stK(x) =
⋃
{inside(σ) | σ is a simplex of |K| and x ∈ σ}

Lemma 25.2.2. For any x ∈ |K|, stK(x) is open in |K|.

Proof. Consider

|K| − stK(x) =
⋃
{inside(σ) | σ is a simplex of |K| and x /∈ σ}

=
⋃
{σ | σ is a simplex of |K| and x /∈ σ}

The second equality holds as any point lies in a simplex lies in the inside of some face τ of σ, and
x /∈ σ implies x /∈ τ . Now the latter is a subcomplex of K. This is closed, thus stK(x) is open.

Proposition 25.2.3. Let K and L be simplicial complexes, and let f : |K| → |L| be a continuous
map. Suppose that for each vertex v of K, there is a vertex g(v) of L such that f(stK(v)) ⊆ stL(g(v)).
Then g is a simplicial map V (K)→ V (L) and |g| ≃ f .

Proof. First we claim the following. Let σ = (v0, . . . , vn) be a simplex of K and let x ∈ inside(σ).
Let τ be the simplex of L such that f(x) lies in the inside of τ . Then g(v0), . . . , g(vn) are vertices
of τ .

Since x lies in the inside of τ , it is in stK(vi) for each i. So f(x) ∈ f(stK(vi)) ⊆ stL(g(vi)).
Therefore the inside of τ lies in stL(g(vi)). Thus g(vi) is a vertex of τ .

Now, as g(v0), . . . , g(vn) are vertices of τ , they span a simplex which is a face of τ and hence a
member of L. Thus g is a simplicial map.

We show homotopy between f and |g| as follows. First consider any x ∈ K. Let τ be a
simplex of L that contains f(x) in its inside. Write x =

∑n
i=0 λivi where v0, . . . , vn are vertices of

the same simplex with λi ≥ 0, summing to 1. In particular, |g|(x) =
∑n

i=0 λig(vi). The vertices
g(v0), . . . , g(vn) are all vertices of τ . Thus, we may define a straight-line homotopy in τ that
interpolates between f(x) and |g|(x). This is well-defined, as even though x may lie in several
simplices, they all give the same point H(x, t) for all t ∈ I.

H is continuous, as the map agrees on overlapping starts of simplices, and thus follows from the
gluing lemma.

Proposition 25.2.4. Let K,L, f, g be as in the previous proposition. Let A be any subcomplex of
K and let B be a subcomplex of L such that f(|A|) ⊆ |B|. Then g also maps A into B and the
homotopy between |g| and f sends |A| to |B| throughout.
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Proof. Let v be any vertex of A. Let τ be the simplex of L such that f(v) lies in the inside of τ .
Then by the claim above, g(v) is a vertex of τ . Since f(v) ∈ |B|, we deduce that τ lies in |B|, and
hence g(v) is a vertex of B.

Now consider any point x in |A|. Let (v0, . . . , vn) be the simplex of K containing x in its inside.
Let τ ′ be the simplex of L such that f(x) lies in the inside of τ ′. Then τ ′ lies in B as f(x) lies in
|B|. By the first claim in Proposition 25.2.3, g(v0), . . . , g(vn) must all be vertices of τ ′, and hence
vertices of B. The straight-line homotopy between f and |g| sends x into τ ′ throughout, and hence
the image of x remains in |B|.

Definition 25.2.5. The standard metric d on a finite simplicial complex |K| is defined to be

d(
∑
i

λivi,
∑
i

λ′ivi) =
∑
i

|λi − λ′i|

Note this is an actual metric on |K|.

Definition 25.2.6. Let K ′ be the subdivision on K, and let d be the standard metric on |K|. The
coarseness of the subdivision is

sup{d(x, y) | x and y belong to the star of the same vertex of K ′}

Example 25.2.7. The subdivision (I × I)(r) has coarseness 4/r (by the standard metric).

Theorem 25.2.8 (Lebesgue Covering Theorem). Let X be a complact metric space, and let U be
an open covering of X. Then there is a constant δ > 0 such that every subset of X with diameter
less than δ is entirely contained within some member of U .

Proof. For each x ∈ X, we can find an open Ux such that x ∈ Ux. By openness of this, we can find
a rx such that x ∈ B(x, rx) ⊆ Ux.

Take the set B(x, rx/2), which covers X. By compactness, a finite set of balls with xi that
covers X. Take the minimum rxi/2 of this set and set it as δ.

Now, take any subset A of X with diameter less than δ. Pick any a ∈ A and find the corre-
sponding B(xi, rxi/2) such that a ∈ B(xi, rxi/2). By the triangle inequality, any a′ ∈ A is contained
in B(xi, rxi) ⊆ Uxi .

Theorem 25.2.9 (Simplicial Approximation Theorem (Variant 1)). Let K and L be simplicial
complexes where K is finite, and let f : |K| → |L| be a continuous map. Then, there is a constant
δ > 0 with the following property. If K ′ is a subdivision of K with coarseness less than δ, then there
is a simplicial map g : K ′ → L such that |g| ≃ f .

Proof. The sets {stL(w) | w is a vetex of L} form an open covering of |L|, and so the sets
{f−1(stL(w))} form an open covering of |K|. Let δ > 0 be the constant from the Lebesgue Covering
Theorem for this covering, and let K ′ be a subdivision of K with coarseness less than δ.

Then, for any vertex v of K ′, diam(st′K(v)) ≤ δ. In particular, there is some vertex w of L such
that st′K(v) ⊆ f−1(stL(w)). Hence f(st′K(v)) ⊆ stL(w). Setting g(v) = w and applying Proposition
25.2.3 gives the claim.

Proposition 25.2.10. Let A1, . . . , An be subcomplexes of K and let B1, . . . , Bn be subcomplexes of
L such that f(Ai) ⊆ Bi for each i. Then the simplicial map g : V (K ′) → V (L) by the above sends
Ai to Bi and the homotopy between f and |g| sends Ai to Bi throughout.

Proof. A simple consequence from Proposition 25.2.4.
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Definition 25.2.11. Let K = (V,Σ) be an abstract simplicial complex. Then its barycentric
subdivision K(1) = (V ′,Σ′) defined by V ′ = Σ and Σ′ specified by the following rule : (σ0, . . . , σn) ∈
Σ′ if and only if (after possible reordering) σ0 ⊊ σ1 ⊊ · · · ⊊ σn.

For each r ≥ 2, the subdivision K(r) is given by setting (K(r−1))(1).

Proposition 25.2.12. A finite simplicial complex K has subdivisions K(r) such that the coarseness
of K(r) tends to 0 as r →∞.

Proof. (Sketch) Without loss of generality, we may consider the K to be the standard n-simplex,
as we can perform the operation on this simplex on all the simplices of K simultaneously.

In the reduced case, for each face F of ∆n with vertices v1, . . . , vr, the barycenter of F is
(v1 + · · · + vr)/r. define a new simplicial complex K ′ with vertices precisely the barycenters of
each of the faces. A set of vertices w1, . . . , ws of K ′ corresponding to faces F1, . . . , Fs of ∆n span a
simplex of K ′ if and there are (up to re-ordering), there are inclusions F1 ⊊ F2 ⊊ · · · ⊊ Fs. This is
a subdivision of ∆n.

We finally note that the coarseness of this tends to 0 as r tends to infinity.

Theorem 25.2.13 (Simplicial Approximation Theorem (Variant 2)). Let K and L be simplicial
complexes where K is finite, and let f : |K| → |L| be a continuous map. Then there is some
subdivision K ′ of K and a simplicial map g : K ′ → L such that |g| is homotopic to f .

Proof. Follows from Theorem 25.2.9 and barycentric subdivision makes the coarseness of K(r) tend
to 0 as r →∞.

26 Groups

26.1 Free Group

Definition 26.1.1. Given any set S, define S−1 to be a copy of S, where each element x ∈ S is
given a corresponding element of S−1 by x−1. We note that S ∩ S−1 = ∅, and that given x−1 ∈
S−1, (x−1)−1 = x.

Definition 26.1.2. A word w is a finite sequence x1, . . . , xm where m ∈ Z≥0 and each xi ∈ S∪S−1.
We write w as x1x2 . . . xm. The empty sequence given when m = 0 is denoted ∅.

Definition 26.1.3. The concatenation of two words x1x2 . . . xm and y1y2 . . . yn is the word
x1x2 . . . xmy1y2 . . . yn.

Definition 26.1.4. A word w′ is an elementary contraction of a word w, written w ↘ w′, if
w = y1xx

−1y2 and w′ = y1y2 for words y1 and y2, and x ∈ S ∪S−1. We also write w′ ↗ w and say
that w is an elementary expansion of w′.

Definition 26.1.5. Two words w′ and w are equivalent, written w ∼ w′ if there are words w1, . . . , wn
where w = w1 and w′ = wn such that for each i, wi ↗ wi+1 or wi ↘ wi+1. The equivalence class
of a word is denoted [w].

Definition 26.1.6. The free group on the set S, denoted F (S) consists of equivalence classes of
words in the alphabet S. The composition of two elements [w] and [w′] is the class [ww′]. The
identity element is [∅], denoted e. The inverse of an element [x1x2 . . . xn] is [x−1

n . . . x−1
2 x−1

1 ].

Note that composition is well-defined, and is clear from definitions.
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Definition 26.1.7. A word is reduced if it does not admit an elementary contraction.

Lemma 26.1.8. Let w1, w2, w3 be words such that w1 ↗ w2 ↘ w3. Then there is a word w′
2 such

that w1 ↘ w′
2 ↗ w3, or w1 = w3.

Definition 26.1.9. Since w1 ↗ w2, we can write w1 = ab and w2 = axx−1b for some x ∈ S ∪S−1,
and words a, b. As w2 ↘ w3, w3 is obtained from w2 by removing yy−1 for some y ∈ S ∪ S−1. The
letters xx−1 and yy−1 intersect in either zero, one, or two letters. We do a case split.

If they do not intersect, then we can remove yy−1 from w1 Hence, denoting w′
2 to be such a

word, we have w1 ↘ w′
2 ↗ w3. If they intersect at a single letter, x = y−1, so w2 has a chain

of letters xx−1x or x−1xx−1, and w1, w3 are obtained by performing an elementary contraction on
these letters. Thus, w1 = w3. If they intersect in two letters, then we obviously have w1 = w3.

Proposition 26.1.10. Any element of a free group F (S) is represented by a unique reduced word.

Proof. An elementary contraction to a word reduced the length by two. Thus, a shortest repre-
sentative for an element of F (S) must be reduced. We show that this representative is unique.
Suppose there are two distinct words w and w′ that are equivalent. Then by definition, we can find
a sequence of words w1, . . . wn such that w = w1 and w′ = wn and wi ↗ wi+1 or wi ↘ wi+1 for all i.
Consider a shortest such sequence. Then, we must have wi distinct. Suppose that at some point we
have wi ↗ wi+1 ↘ wi+2. Then by Lemma 26.1.8, we can find a w′

i+1 such that wi ↘ w′
i+1 ↗ wi+2.

Repeating this, we can perform all↘ moves before↗ ones. Thus, the sequence starts with w1 ↘ w2

or ends with wn−1 ↗ wn. This implies either w or w′ was not reduced, a contradiction.

Theorem 26.1.11 (Universal Property on Free Groups). Given any set S and group G and any
function f : S → G, there is a unique homomorphism ϕ : F (S)→ G such that the following diagram
commutes:

S G

F (S)

f

ι
ϕ

where ι : S → F (S) is the canonical inclusion.

Proof. We first show existence. Consider any word w = xϵ11 . . . xϵnn , where xi ∈ S and ϵi ∈ {−1, 1}.
Define ϕ(w) to be f(x1)ϵ1 . . . f(xn)ϵn . To show that this is well-defined, given w ∼ w′, they must
have the same image under ϕ. It suffices to show that this is the case when w′ is an elementary
contraction of w, where w = w1xx

−1w2 or w = w1x
−1xw2 and w′ = w1w2. In the case where

w = w1xx
−1w2,

ϕ(w) = ϕ(w1)f(x)f
−1(x)ϕ(w2) = ϕ(w1)ϕ(w2) = ϕ(w′)

The second case is similar. Thus ϕ is well-defined, and is clearly a homomorphism.
Note this map is unique, as if x ∈ S, ϕ(x) = f(x), and the fact ϕ is a homomorphism is

determined by the map of the generators.

26.2 Group Presentations

Definition 26.2.1. Let B be a subset of a group G. The normal subgroup generated by B is the
intersection of all normal subgroups of G that contain B. We write ⟨⟨B⟩⟩ for this.

Remark 26.2.2. The intersection of a collection of normal subgroups is a normal subgroup. Thus
⟨⟨B⟩⟩ is normal in G. It is therefore also the smallest normal subgroup of G that contains B.
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Proposition 26.2.3. The subgroup ⟨⟨B⟩⟩ consists of all expressions of the form

n∏
i=1

gib
ϵi
i g

−1
i

where n ∈ Z≥⊬, gi ∈ G, bi ∈ B and ϵi = ±1 for all i.

Proof. Any normal subgroup containing B must contain all the elements of the form gbg−1 and
gb−1g−1. Thus it must also contain a finite product of them. Taking N to be the set of all these
finite products, we certainly have N ⊆ ⟨⟨B⟩⟩. It remains to show that N is a normal subgroup, as
we have B ⊆ N , giving ⟨⟨B⟩⟩ ⊆ N .

Identity, inverse, and closure are straightforward. To show normality, note that

g

(
n∏
i=1

gib
ϵi
i g

−1
i

)
g−1 =

n∏
i=1

ggib
ϵi
i g

−1
i g−1 =

n∏
i=1

(ggi)b
ϵi
i (ggi)

−1

which lies in N .

Definition 26.2.4. Let X be a set, and let R be a collection of elements of F (X). The group with
presentation ⟨X|R⟩ is defined to be F (X)/⟨⟨R⟩⟩. We slightly abuse notation by allowing relations
of the form w1 = w2, which is shorthand for w1w

−1
2 .

Therefore, two words in the alphabet represent the same element of G precisely when there is an
element y ∈ ⟨⟨R⟩⟩ such that w′ = wy.

Example 26.2.5. The dihedral group D2n can be written as

⟨σ, τ | σn, τ2, τστσ⟩

Proposition 26.2.6. Let G = ⟨X|R⟩. Then two words w,w′ in X represent the same element of
G if and only if they differ by a finite sequence of the following moves

1. perform an elementary contraction or expansion

2. insert in the word one of the relations in R or its inverse

Proof. Applying the moves does not change the element of G that it represents. To show that if w
and w′ represent the same elements of G, they differ by a finite sequence of moves. In particular,
as elements of F (X) have the equality w′ = wy, we can write

w′ = w
n∏
i=1

gir
ϵi
i g

−1
i

We can obtain wg1g
−1
1 by the first move, then obtain wg1r

ϵ1
1 g

−1
1 by the second move. Continuing,

we can obtain w′ from w.

Example 26.2.7. We can turn τσnτ into e by the moves as follows :

τσnτ → τσnσ−nτ → ττ → τ2τ−2 → e

Proposition 26.2.8. Every group G has a presentation.
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Proof. Let F (G) be the free group on the generating set G. Then F (G) consists of all equivalence
classes of words in G. Thus, if x1 and x2 are nontrivial elements of G and x3 = x1x2 in G, [x3]
and [x1][x2] represent distinct elements of F (G), as they are non-equivalent words in the alphabet
G. We have a well-defined homomorphism from F (G) to G, sending each generator of F (G) to the
corresponding element of G, which is clearly surjective. Let R(G) be the kernel of this homomor-
phism. Then, by the first isomorphism theorem, we have G ≃ F (G)/R(G). In particular G has
presentation ⟨G|R(G)⟩.

Definition 26.2.9. The canonical presentation for G is ⟨G|R(G)⟩.

Definition 26.2.10. A presentation ⟨X|R⟩ is finite if X and R are both finite sets. A group is
finitely presented if it has a finite presentation.

Lemma 26.2.11. Let ⟨X|R⟩ and H both be groups. Let f : X → H induce a homomorphism
ϕ : F (X) → H. This descends to a homomorphism ⟨X|R⟩ → H if and only if ϕ(r) = e for all
r ∈ R.

Proof. Note that ϕ(r) = e is a necessary condition for ϕ to be a homomorphism, as any r ∈ R
represents the identity element of ⟨X|R⟩.

Conversely, if ϕ(r) = e for all r ∈ R, we note that any element w of ⟨⟨R⟩⟩ can be written as

n∏
i=1

wir
ϵi
i w

−1
i

for wi ∈ F (X), ri ∈ R. As ϕ(r) = e, we have ϕ(w) = e. In particular, ϕ descends to a homomorphism
F (X)/⟨⟨R⟩⟩.

Definition 26.2.12. A Tietze Transformation is one of the following moves applied to a finite
presentation ⟨x1, . . . , xm | r1, . . . , rn⟩

1. Re-order generators or relations

2. Add or remove the relation e

3. Perform an elementary contraction or expansion to a relation ri

4. Insert a relation ri or its inverse into one of the other rj or remove it

5. Add a generator xm+1 together with a relation w(x1, . . . , xm)x−1
m+1, which defines it as a word

in the old generators, or perform the reverse of this operation

Note first that these transformations don’t alter the group, and are also invertible.

Lemma 26.2.13. Let ⟨x1, . . . , xm | r1, . . . , rn⟩ be a presentation for a group G. Suppose that a
word w in the generators x1, . . . , xm is trivial in G. Then there is a sequence of (ii), (iii), and (iv)
moves that transforms this presentation to ⟨x1, . . . , xm | r1, . . . , rn, w⟩.

Proof. Start by adding the relation e. As w is trivial in G, we can write get to this element via
moves (iii) and (iv).

Theorem 26.2.14 (Tietze). Any two finite presentations of a group G are convertible into each
other by a finite sequence of Tietze transformations.
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Proof. Let ⟨x1, . . . , xm | r1, . . . , rn⟩ and ⟨x′1, . . . , x′m′ | r′1, . . . , r′n′⟩ be two presentations of G. Since
each x′i is an element of ⟨x1, . . . , xm | r1, . . . , rn⟩, it can be written as a word χ′

i in the generators
x1, . . . , xm. Similarly each xi can be written as a word χi in the generators x′1, . . . , x′m′ .

We start by applying move (v) m′ times to the first presentation to obtain

⟨x1, . . . , xmx′1, . . . , x′m′ | r1, . . . , rn, χ′
1(x

′
1)

−1, . . . , χ′
m′(x′m′)−1⟩

As the relation xi = χi holds in the group, by Lemma 26.2.13, we can use moves (ii) ∼ (iv) to
transform this into

⟨x1, . . . , xmx′1, . . . , x′m′ | r1, . . . , rn, χ′
1(x

′
1)

−1, . . . , χ′
m′(x′m′)−1, χ1(x

−1
1 ), . . . , χm(x

−1
m )⟩

Now, the relations r′1, . . . , r′n also represent trivial words in the group. Thus by Lemma 26.2.13
again, we transform this into

⟨x1, . . . , xmx′1, . . . , x′m′ | r1, . . . , rn, r′1, . . . r′n′χ′
1(x

′
1)

−1, . . . , χ′
m′(x′m′)−1, χ1(x

−1
1 ), . . . , χm(x

−1
m )⟩

This presentation is symmetric with respect to primed and unprimed symbols up to reordering.
Thus by applying (i) moves and then reversing the derivation, we can obtain the presentation

⟨x1, . . . , xm | r1, . . . , rn⟩

Proposition 26.2.15. Given G1 = ⟨X1 | R1⟩ and G2 = ⟨X2 | R2⟩, then we have

G1 ×G2 ≃ ⟨X1 ⊔X2 | R1 ∪R2 ∪ {xyx−1y−1 | x ∈ X1, y ∈ X2}⟩

Proof. Let H := F (X1 ⊔X2)/⟨⟨R1, R2, [x, y]⟩⟩. Take

ϕ̃(x) =

{
(x, 1) x ∈ X1

(1, x) x ∈ X2

each relator is mapped to the identity, so ϕ̃ descends to a well-defined homomorphism ϕ. This is by
construction surjective, and is injective as if we take any x in the kernel of ϕ, projecting onto G1

and G2 shows they are trivial in each side. Thus x is trivial as we can permute letters inside H.

Example 26.2.16. D2n has presentation G := ⟨a, b | an, b2, abab⟩.
We give an explicit surjection from this group to D2n and argue by size. specifically, note that

sending a 7→ r and b 7→ s, labelling rotation by r and reflection by s shows that each relator is sent
to the identity by this map. In particular, we have a well-defined homomorphism to D2n. We can
reduce every symmetry of an n-gon to either rk or srk, which is hit by words in G. By the same
argument, this shows that |G| ≤ 2n, thus the map is an isomorphism.

Proposition 26.2.17. Every nontrivial word in the free group has infinite order.

Proof. We first note that every nontrivial word is conjugate to a nontrivial reduced word such that
the last letter is not the inverse of the first (by peeling off these elements, and this equals e if and
only if the word itself is trivial). We call these words cyclically reduced for short. Now, conjugate
words have the same order, and these words clearly have infinite order by a length argument.

Proposition 26.2.18. If S has multiple elements, the center of F (S) is the identity element.

Proof. Let |S| ≥ 2 and a, b ∈ S be generators. Suppose z ∈ Z(F (S)). Then we have za = az
and zb = bz, each of which forces the first character of z to be a or a−1 and b or b−1, which is
impossible.
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26.3 Push-out

Definition 26.3.1. Let G0, G1, G2 be groups and let ϕ1 : G0 → G1 and ϕ2 : G0 → G2 be homomor-
phisms. Let ⟨X1 | R1⟩ and ⟨X2 | R2⟩ be canonical presentations of G1 and G2, where X1 ∩X2 = ∅.
We define the push-out G1 ∗G0 G2 of

G1
ϕ1← G0

ϕ2→ G2

to be the group
⟨X1 ∪X2 | R1 ∪R2 ∪ {ϕ1(g) = ϕ2(g) | g ∈ G0}⟩

Note that the pushout depends on the homomorphism, but is not ambiguous up to isomorphism
when ϕ1 and ϕ2 are injections (by viewing G0 to be a subgroup of both G1 and G2).

Remark 26.3.2. The inclusions X1 → X1 ∪ X2 and X2 → X1 ∪ X2 induces canonical homo-
morphisms α1 : G1 → G1 ∗G0 G2 and α2 : G2 → G1 ∗G0 G2, such that the following diagrams
commutes:

G0

G1 G2

G1 ∗G0 G2

ϕ1 ϕ2

α1 α2

This is because the relation ϕ1(g) = ϕ2(g) holds for each g ∈ G0 holds in G1 ∗G0 G2.

Proposition 26.3.3 (Universal Property of Pushouts). Let G1 ∗G0 G2 be the pushout induced by
ϕ1 : G0 → G1 and ϕ2 : G0 → G2. Let β1 : G1 → H and β2 : G2 → H be homomorphisms such that
the following commutes:

G0

G1 G2

H

ϕ1 ϕ2

β1 β2

Then there exists a unique homomorphism β : G1 ∗G0 G2 → H such that the following commutes:

G1 G1 ∗G0 G2 G2

H

α1

β1
β

α2

β2

Proof. The pushout G1 ∗G0 G2 has generators G1 ∪ G2. Define β on these generators by β(gi) =
βi(gi) for all gi ∈ Gi. Note that this is forced by the commutativity of the second diagram.
Thus if the homomorphism exists, it is unique. To show this map is well-defined, it must send
relations r in G1 ∗G0 G2 with β(r) = e. This is true for relations in G1 and G2, as β1 and β2
are well-defined homomorphisms. The other type of relation is ϕ1(g)(ϕ2(g))−1 for g ∈ G0. But
(β(ϕ1(g)))(β(ϕ2(g)))

−1 = e by the commutativity of the first diagram.
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Lemma 26.3.4. Let G0, G1, G2, ϕ1, ϕ2 be as in the definition for pushouts. Let ⟨X ′
1 | R′

1⟩ and
⟨X ′

2 | R′
2⟩ be any presentations for G1 and G2 where X ′

1 ∩X ′
2 = ∅. Then the pushout is isomorphic

to
H := ⟨X ′

1 ∪X ′
2 | R′

1 ∪R′
2 ∪ {ϕ1(g) = ϕ2(g) | g ∈ G0}⟩

Proof. Let G := G1 ∗G0 G2 be the pushout. Define G1 → ⟨X ′
1 | R′

1⟩ and G2 → ⟨X ′
2 | R′

2⟩ be the
‘identity’ maps. The inclusions of X ′

1 and X ′
2 induce homomorphisms β1 : G1 → H and β2 : G2 →

H. This gives a commutative diagram as in Proposition 26.3.3, as the relation ϕ1(g) = ϕ2(g) holds
in H. Thus by the same proposition, we have a homomorphism β : G → H with commutative
properties.

Now note that there is a function X ′
i → Gi sending each generator to the corresponding element

of Gi. Composing this map with αi to give a function f : X ′
1 ∪X ′

2 → G. This induces a homomor-
phism ϕ : F (X ′

1 ∪ X ′
2) → G, why descends to a homomorphism ϕ : H → G as ϕ(r) = e for each

relation r in the presentation of H. By construction, this is an inverse for β, thus G ∼= H.

Definition 26.3.5. When G0 is the trivial group, the pushout G1 ∗G0 G2 depends only on G1 and
G2. This is known as the free product G1 ∗G2.

Example 26.3.6. The free product Z ∗ Z is isomorphic to the free group on two generators, as we
may take ⟨x |⟩ and ⟨y |⟩ for the two presentations, and we know by Lemma 26.3.4 that Z ∗ Z is
isomorphic to ⟨x, y |⟩.

Definition 26.3.7. When ϕ1 : G0 ↪→ G1 and ϕ2 : G0 ↪→ G2, the pushout G1 ∗G0 G2 is known as
the amalgamated free product of G1 and G2 along G0.

Example 26.3.8. Consider the pushout defined by

Z id← Z ×2→ Z

Then taking the base set as ⟨t |⟩, the maps to ⟨x |⟩ and ⟨y |⟩ are given by t 7→ x and t 7→ y2. Then
our imposed equality is x2 = y2n for all n ∈ Z. In particular x = y2, so by eliminating the generator
x, we are left with ⟨y |⟩ which is isomorphic to Z

Example 26.3.9. Consider the pushout defined by

Z ×2← Z ×3→ Z

Then the push-out has presentation

⟨u, v | u2n = v3n, n ∈ Z⟩

which can be written simply as
⟨u, v | u2 = v3, n ∈ Z⟩

We then consider the map u 7→ yxy and v 7→ xy. Then taking xyx = yxy, we have

ϕ(v) = (xy)3 = xyxyxy = yxyyxy = (yxy)2 = ϕ(u)2

ϕ is surjective as ϕ(uv−1) = y and ϕ(v2u) = x. This also gives a straightforward inverse, which
satisfies the braiding relation, so in particular give isomorphisms.

Proposition 26.3.10. Let α : G → G ∗ H be the (left) canonical homomorphism. Then α is
injective.
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Proof. We give an explicit π such that π ◦ α = idG. Specifically, we take

π(x) =

{
x if x ∈ G
1 if x ∈ H

This satisfies πα = idG, thus α is injective.

Remark 26.3.11. Given any H := G1 ∗G0 G2, we can reduce any word w ∈ H to a word of the
form

w = g1h1 . . . gnhn

where gi ∈ G1 and hi ∈ G2, by amalgamating successive letters in G1 (resp. G2) and removing
identities. By repeating this reduction sequence, we reach a reduced word such that gi, hi are all
nontrivial except possibly g1 and or hn.

In the case the product is free, the reduced word is unique (we note that the reduction satisfies
the diamond property).

27 Fundamental Group

27.1 Definitions

Definition 27.1.1. A loop based at a point b ∈ X is a path ℓ : I → X such that ℓ(0) = ℓ(1) = b.
The point b is knows as its basepoint.

Definition 27.1.2. The homotopy classes relative to ∂I of loops based at b form a group, called the
fundamental group of (X, b), denoted π1(X, b). If ℓ and ℓ′ are loops based at b, then [ℓ] and [ℓ′]
are their homotopy classes relative to ∂I, with their composition defined as [ℓ].[ℓ′] = [ℓ.ℓ′].

Note the base-point is required as a consequence of making sure that two loops can always be
composed. If we don’t have the requirement that homotopies are relative to ∂I, then any two paths
in the same path-component of X are homotopic, as I is contractible (intuitively, collapse f to the
path connected node, and move along it, and uncollapse at g). Finally, note that composition of
paths itself is not necessarily associative, as the images are equal, but the path traverses through
them at different speeds.

We show this is well-defined, is associative, has an identity, and also have inverses.

Lemma 27.1.3 (Well-definedness of Fundamental Groups). Suppose that u and v are paths in X
such that u(1) = v(0). Suppose also that u′ (and respectively v′) are paths with the same endpoints
as u (respectively v). If u ≃ u′, v ≃ v′ both relative to ∂I, then u.v ≃ u′.v′, relative to ∂I.

Proof. Let H : u ≃ u′ and K : v ≃ v′ be the given homotopies. Then we can define L : I × I → X
by

L(t, s) =

{
H(2t, s) if 0 ≤ t ≤ 1

2

K(2t− 1, s) if 1
2 ≤ t ≤ 1

This is continuous by the Gluing Lemma, thus we have L : u.v ≃ u′.v′, relative to ∂I.
Alternatively, the following diagram represents L.
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t

s

u v

u′ v′

cu(0) cu(1) cv(1)H K

Lemma 27.1.4 (Associativity of Fundamental Groups). Let u, v, w be paths in X such that u(1) =
v(0) and v(1) = w(0). Then u.(v.w) ≃ (u.v).w relative to ∂I.

Proof. We give an explicit homotopy H : I × I → X by

H(t, s) =


u( 4t

2−s) if 0 ≤ t ≤ 1
2 −

1
4s

v(4t− 2 + s) if 1
2 −

1
4s ≤ t ≤

3
4 −

1
4s

w(4t−3+s
1+s ) if 3

4 −
1
4s ≤ t ≤ 1

Again, continuity follows from the gluing lemma. Alternatively, we can use the following diagram:

t

s

u v w

u v w

cu(0) cu(1) cv(1) cw(1)

Lemma 27.1.5 (Identity of Fundamental Groups). Let u be a path in X with u(0) = x and u(1) = y.
Then cx.u ≃ u relative to ∂I and u.cy ≃ u relative to ∂I. In particular, [cb] is the identity element
in π1(X, b).

Proof. We note the following diagrams:
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t

s

u

cx cy

cx u

cx

t

s

u

cx cy

u cy

cy

Lemma 27.1.6 (Inverses in Fundamental Groups). Let u be a path in X with u(0) = x and
u(1) = y, and define u−1 as u−1(t) = u(1 − t). Then u.u−1 ≃ cx relative to ∂I and u−1.u ≃ cy
relative to ∂I.

Proof. We give an explicit homotopy between u.u−1 and cx:

H(t, s) =

{
u(2t(1− s)) if 0 ≤ t ≤ 1

2

u((2− 2t)(1− s)) if 1
2 ≤ t ≤ 1

The idea is ‘stopping’ how far we go in u, and traversing back. A similar construction can be made
for u−1.u, by considering the inverse of their paths.

Example 27.1.7. Let b be the origin in R2. Then π1(R2, b) is the trivial group. This is due to
the fact every loop based at b is homotopic relative to ∂I to the constant loop cb via straight-line
homotopy.

Remark 27.1.8. We note that if X0 is the path-component of X containing the basepoint b, then
π1(X, b) = π1(X0, b). This is a simple consequence of the fact any loop in X based at b must lie
entirely in X0, and the homotopy between two such loops must also lie in X0.

Proposition 27.1.9. If b and b′ lie in the same path-component of X, then π1(X, b) ≃ π1(X, b′).

Proof. Let w be a path from b to b′ in X. If ℓ is a loop based at b, then w−1.ℓ.w is a loop based at
b′, and the function

w# : π1(X, b)→ π(X, b
′)

[ℓ] 7→ [w−1.ℓ.w]

is well-defined. We also have

w#([ℓ])w#([ℓ
′]) = [w−1.ℓ.w][w−1.ℓ′.w]

= [w−1.ℓ.(w.w−1).ℓ′.w]

= [w−1.ℓ.cb.ℓ
′.w]

= [w−1.(ℓ.ℓ′).w]

= w#([ℓ][ℓ
′])

thus w# is a homomorphism. Also, w# has an inverse (w−1)#, since

(w−1)#(w#([ℓ])) = (w−1)#([w
−1.ℓ.w]) = [w.w−1.ℓ.w.w−1] = [ℓ]
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Remark 27.1.10. The isomorphism w# depends on the choice of w. If u is another path from
b to b′, u−1

# w# is the map [ℓ] 7→ [u.w−1.ℓ.w.u−1], which is the operation of conjugation by the
element [w.u−1] of π1(X, b). As the fundamental group need not be abelian, this map need not be
the identity.

Remark 27.1.11. There is a bijection between unbased loops in X in the component of b to
conjugacy classes in π1(X, b). Let ℓ : S1 → X.

Pick an abitrary path from b to ℓ(1). Then the loop w.ℓ.w−1 is a loop in X based at b. Applying
a homotopy to ℓ does not change the homotopy class relative to ∂I of this loop.

Changing the choice to path w would alter this element by a conjugacy. In particular, we obtain
a well-defined conjugacy class in π(X, b) from any homotopy class of loop in X.

TODO: Show correspondence, have only shown well-definedness

Proposition 27.1.12. Let (X,x) and (Y, y) be spaces with basepoints. Then, any continuous map
f : (X,x)→ (Y, y) induces a homomorphism f∗ : π1(X,x)→ π1(Y, y). Further, we have

1. (idX)∗ = idπ1(X,x)

2. if g : (Y, y)→ (Z, z) is some map, (gf)∗ = g∗f∗

3. if f ≃ f ′ relative to {x}, then f∗ = f ′∗.

Proof. Define f∗([ℓ]) = [f◦ℓ]. Note this is well-defined by the version of Lemma 25.1.6 on homotopies
relative to ∂I. Also, f ◦ (ℓ.ℓ′) = (f ◦ ℓ).(f ◦ ℓ′), thus f∗ is a homomorphism.

The first two claims are straightforward, and the final one is a consequence of Lemma 25.1.6 for
homotopies relative to a subspace (noting that ℓ(∂I) ⊆ {x}).

Proposition 27.1.13. Let X and Y be path-connected spaces such that X ≃ Y . Then π1(X) ≃
π1(Y ).

Proof. Let f : X → Y and g : Y → X be homotopy equivalences.
Choose x0 ∈ X and let y0 ∈ f(x0) and x1 = g(y0), such that we have induced homomorphisms

π1(X,x0)
f∗→ π1(Y, y0)

g∗→ π1(X,x1)

Let H be the homotopy between gf and idX . Then w(t) = H(x0, t) is a path from x1 to x0. Let ℓ
be a loop in X based at x0 and consider K = H ◦ (ℓ× idI) : I × I → X.

We then rescale K to the trapezoid with maps that are constant on the first variable. This gives
a homotopy relative to ∂I between w−1.(g ◦ f ◦ ℓ).w and ℓ.

Thus, we have w#g∗f∗[ℓ] = [ℓ]. In particular, w#g∗f∗ = idπ1(X,x0). In particular, f∗ is injective,
and as w# is an isomorphism, g∗ is surjective. By composing the other way around, we see that g∗
is injective, and in particular an isomorphism.

Consequently, if X is a contractible space, π1(X) is the trivial group.
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ℓ

cx0
cx0

w−1 wgfℓ

Definition 27.1.14. A space is simply-connected if it is path-connected and has trivial funda-
mental group.

Note that it need not be the case that simply-connected spaces are contractible. A counter-
example is the 2-sphere.

27.2 Seifert Van Kampen

Theorem 27.2.1 (Seifert Van Kampen). Let K be a space which is a union of two path-connected
open sets K1 and K2, where K1 ∩K2 is also path-connected. Let b be a point in K1 ∩K2 and let
ιi : K1 ∩K2 → K1 and ι2 : K1 ∩K2 → K2 be the inclusion maps. Then π1(K, b) is isomorphic to
the push-out of

π1(K1, b)
ι1∗← π1(K1 ∩K2, b)

ι2∗→ π1(K2, b)

Moreover, the homomorphisms π1(K1, b) → π1(K, b) and π1(K2, b) → π1(K, b) which are the com-
position of the canonical homomorphisms to the pushout and the isomorphism to π1(K, b), are the
maps induced by inclusion.

Explicitly, if ⟨X1 | R1⟩ and ⟨X2 | R2⟩ are presentations for π1(K1, b) and π1(K2, b) with X1 ∩
X2 = ∅, then a presentation of π1(K, b) is given by

⟨X1 ∪X2 | R1 ∪R2 ∪ {ι1∗(g) = ι2∗(g) | g ∈ π1(X1 ∩X2, b)}⟩

Moreover, the homomorphism ⟨Xi | Ri⟩ → π1(K, b) arising from the inclusion of generators Xi →
X1 ∪X2 is the map induced by the inclusion Ki → K.

Proof.

Definition 27.2.2. The wedge (X,x) ∨ (Y, y) of two spaces with basepoints is the quotient of the
disjoint union X ⊔ Y with the identification x ∼ y. It’s basepoint is the image of x and y in the
quotient.

Example 27.2.3. By picking an arbitrary basepoint b in S1 and wedging n copies of S1, b together,
we obtain the space

∨n S1 which is known as the bouquet of circles. For instance, the case with
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n = 4 is the following:

Corollary 27.2.4. the fundamental group of
∨n S1 is isomorphic to the free group on n generators.

Proof. We apply induction on n. For the case n = 1, we have π1(S1) ∼= Z. For the inductive case,
suppose that π1(

∨n−1 S1) is the free group on n− 1 generators. Let b be the vertex of this wedge,
which we take to be the basepoint. Let N be a small open neighborhood of b. Decompose

∨n S1

as K1 = N ∪
∨n−1 S1 and K2 = N ∪ S1. Then

∨n−1 S1 is a homotopy retract of K1 and S1 is a
homotopy retract of K2. The intersection K1 ∩K2 is N , which is clearly contractible. So by Seifert
Van Kampen, π1(

∨n S1) has a presentation with n generators and no relations.

Theorem 27.2.5. Let K be a connected cell complex, and let ℓi : S1 → K1 be the attaching maps
of its 2-cells, where 1 ≤ i ≤ n. Let b be a basepoint in K0. Let [ℓi] be the conjugacy class of the loop
ℓi in π1(K

1, b). Then π1(K, b) is isomorphic to π1(K1, b)/⟨⟨[ℓ1], . . . , [ℓn]⟩⟩.

Theorem 27.2.6. Let K be a connected cell complex, and let ℓi : S1 → K1 be the attaching maps
of its 2-cells, where 1 ≤ i ≤ n. Let b be a basepoint in K0. Let [ℓi] be the conjugacy class of the loop
ℓi in π1(K

1, b). Then
π1(K

1, b)/⟨⟨[ℓ1], . . . , [ℓn]⟩⟩ ≃ π1(K, b)

As π1(K1, b) is free, then this also gives a presentation for π1(K, b).

Proof. Note first that ℓi need not be based at b, but give well-defined conjugacy classes. Picking
out representatives ℓ′i for [ℓi], we can write

π1(K
1, b)/⟨⟨ℓ′1, . . . , ℓ′n⟩⟩ ≃ π1(K, b)

We split the space into open sets K1 = {z ∈ Dn | |z| < 2
3} and K2 = {z ∈ Dn | |z| > 1

3} ⊔X/ ∼.
Then, K1 is homeomorphic to an open n-ball, and K1∩K2 is homeomorphic to Sn−1×(13 ,

2
3), which

is homotopy equivalent to Sn−1. K2 is homotopy eqiuvalent to X by homotopy retraction. We apply
Seifert Van Kampen. When n > 2, π1(K1 ∩K2) and π1(K1) are both trivial, so the attaching map
has no effect on the fundamental group. When n = 2, π1(K1 ∩K2) ≃ Z and π1(K1) is trivial, so
this has an effect of adding a relation to π1(X) that represents the loop [f ] (by construction).

Corollary 27.2.7. Any finitely presented group can be realised as the fundamental group of a finite
connected cell-complex. Moreover, this may be given a triangulation.

Proof. Given ⟨x1, . . . , xm | r1, . . . , rn⟩, take K0 = ∗, K1 =
∨
m S

1. Give a triangulation on this by
splitting the circle into three 1-simplices. Then π1(K1) is afree group onm generators. Attach 2-cells
along the words ri, then by the previous theorem, this gives the required fundamental group. We
note that 2-cells have a canonical simplicial structure, which gives the whole space a triangulation.
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Corollary 27.2.8. The following are equivalent for a group G

• G is finitely presented

• G is isomorphic to the fundamental group of a finite simplicial complex

• G is isomorphic to the fundamental group of a finite cell complex

Proof. (i) ⇒ (ii) is from above. Note that any finite simplicial complex is a finite cell complex,
so (ii) ⇒ (iii). Finally, we note that attaching maps of n > 2 have no effect on the fundamental
group, so in particular from Theorem 27.2.6 is finitely presented.

27.3 Classification of Fundamental Groups

27.3.1 Fundamental Group of Simplicial Complexes

Definition 27.3.1. Let α be an edge path. An elementary contraction of α is an edge path
obtained from α by performing one of the following :

1. removing ai given ai−1 = ai

2. replacing ai−1, ai, ai+1 with ai−1 given ai−1 = ai+1

3. replacing ai−1, ai, ai+1 with ai−1, ai+1 provided {ai−1, ai, ai+1} span a 2-simplex of K.

α is an elementary expansion of β if β is an elementary expansion of α. We write α ∼ β if we
can pass from α to β. This gives an equivalence relation on edge paths.

Theorem 27.3.2. Let K be a simplicial complex, and let b be a vertex of K. The equivalence
classes of edge loops in K based at b form a group denoted E(K, b), called the edge-loop group.

Proof. The product is induced by the product of edge loops. This respects the equivalence relation.
It is associative because the product of edge loops is associative. The identity is the equivalence
class of (b). The inverse of (b, b1, . . . , bn−1, b) is (b, bn−1, . . . , b1, b).

Theorem 27.3.3. For a simplicial complex K and vertex b, E(K, b) is isomorphic to π1(|K|, b).

Proof. Let I(n) be the triangulation of I with n 1-simplices each of length 1
n . We can regard an

edge path of length n as a simplicial map I(n) → K. This gives a mapping

{edge loops in K based at b} θ→ {loops in |K| based at b}

If α is obtained from β by an elementary contraction, θ(α) and θ(β) are homotopic relative to ∂I.
Thus, θ gives a well-defined mapping from E(K, b) → π1(|K|, b). It remains to show that is is an
isomorphism.

For edge loops α and β, we have θ(α.β) ≃ θ(α).θ(β), this is a homomorphism.
Surjectivity: Let ℓ : I → |K| be any loop in |K| based at b. Give I the triangulation I(1) and

view I(n) as the subdivision. The coarseness of I(n) is 4/r, which tends to 0 as n → ∞, so by the
Simplicial Approximation Theorem (Variant 1), there is a simplicial map α : I(n) → K for some n
such that ℓ ≃ θ(α) = |α| relative to ∂I. In particular, θ([α]) = [ℓ].

Injectivity: Let α = (b0, . . . , bn) be an edge loop based at b. Suppose that θ([α]) is the identity
in π1(|K|, b). Then θ(α) ≃ cb relative to ∂I via some homotopy H : I × I → |K|. Triangulate I × I
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using the triangulation (I × I)(r). By The Simplicial Approximation Theorem, for a sufficiently
large r, we have a simplicial map G : (I × I)(r) → K with G ≃ H.

By Proposition 25.2.10, we can ensure that G sends ∂I × I and I × {1} to b.
cb

cb cb

θ(α)

Using the same Proposition, when r is a multiple of n, we can ensure that G(i/n, 0) = bi, sending
the 1-simplices between (i/n, 0) and ((i+1)/2, 0) to (bi, bi+1). Thus, the restriction of G to I ×{0}
is an edge path which contracts to α.

We can apply a sequence of elementary contractions and expansion that take this edge path to
the edge path where every vertex is b. This is equivalent to (b). In particular, [α] is the identity
element of E(K, b) (as the map preserves fundamental groups).

Definition 27.3.4. For any simplicial complex and non-negative integer n, define the n-skeleton
of K, denoted skeln(K) is the subcomplex of K consisting of simplices with dimension at most n.

Corollary 27.3.5. For any simplicial complex K and vertex b, π1(|K|, b) is isomorphic to
π1(|skel2(K)|, b).

Proof. E(K, b) involves only simplices of dimension at most 2, and E(K, b) ≃ π1(|K|, b),

Corollary 27.3.6. For n ≥ 2, π1(Sn) is trivial.

Proof. Impose a triangulation on Sn, coming from the n-skeleton of ∆n+1. Then Sn and ∆n+1 have
the same 2-skeleton. But ∆n+1 is contractible, so has trivial fundamental group, so does Sn.

27.3.2 Fundamental Group of the Circle

We view S1 here as a circle in C, taking 1 ∈ S1 to be the basepoint.

Theorem 27.3.7. π1(S1) ≃ Z.

Proof. Impose a triangulation K on S1 using three vertices and three 1-simplices. We aim to show
that E(K, 1) is isomorphic to Z.

Consider a simplicial loop α = (b0, . . . , bn) based at 1. If bi = bi+1 for some i, then we may
preform some elementary contraction. If the loop traverses a 1-simplex and then in reverse, we
may also perform an elementary contraction. Thus, a shortest loop equivalent to α traverses all the
simplices with the same orientation. It is therefore equivalence to ℓn for some n ∈ Z.

Define the winding number to be the time a simplicial path traverses the (1,2) simplex minus
the times it traverses it in the backwards direction. Then, the winding number of ℓn is n, and any
elementary contraction or expansion leaves the winding number unchanged.

Thus, we can set up a bijection E(K, 1) → Z based on its winding number. This is an isomor-
phism, since ℓn.ℓm = ℓn+m.
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Theorem 27.3.8 (Fundamental Theorem of Algebra). Any non-constant polynomial with complex
coefficients has at least one root in C.

Proof. let p(x) = anx
n+ · · ·+a0 be a polynomial where an ̸= 0 and n > 0. Let Cr = {x ∈ C | |x| <

r}. Let k = p(r)/rn and q(x) = kxn. Then p(r) = q(r).
We claim that if r is sufficiently large, then p|Cr and q|Cr and the straight-line homotopy all

miss 0. If not, then for some x ∈ Cr and some t ∈ [0, 1],

(1− t)p(x) + tq(x) = 0

Equivalently,

(1− t)(anxn + · · ·+ a0) + t(
an|x|n + · · ·+ a0

|x|n
)xn = 0

rearranging,

anx
n + · · ·+ a0 = t(an−1x

n−1 + · · ·+ a0 − an−1
xn

|x|
− · · · − a0

xn

|x|n
)

The left side has order xn, whereas the right is at most xn−1. Hence as |x| → ∞, |t| → ∞. In
particular, given r sufficiently large, there is no solution in the range t ∈ [0, 1].

So p|Cr and q|Cr are homotopic relative to {r}. Suppose that p has no root in C. Then we have
a commutative diagram

C C− {0}

Cr

p

ι
p|Cr

This induces a function between fundamental groups

0 = π1(C, r) Z ≃ π1(C− {0}, r)

Z ≃ π1(Cr, r)

p∗

ι∗
(p|Cr )∗

In particular, (p|Cr)∗ is the 0-homomorphism. But (p|Cr)∗ = (q|Cr)∗, which sends a generator of
π1(Cr) to n times the generator of π1(C \ {0}), which is a contradiction.

27.3.3 Fundamental Group of a Graph

Theorem 27.3.9. The fundamental group of a connected graph is a free group.

Proof. Let T be a maximal tree in Γ, which exists by Lemma 23.2.5. Let b be a vertex of Γ, which
we take as the baespoint. For any vertex v ∈ Γ, let θ(v) be the unique embedded edge path from b
to v in T . This exists as V (T ) = V (Γ) by Lemma 23.2.4. Set E(Γ) and E(T ) to be the edges of Γ
and T respectively. Assign an orientation to each edge e ∈ E(Γ) \ E(T ), taking ι(e), π(e) to be its
initial and terminal vertices. We claim that the elements {θ(ι(e)).e.θ(π(e))−1 | e ∈ E(Γ) \ E(T )}
form a free generating set for π1(Γ, b).
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28 Covering Spaces

28.1 Basic Definitions

Definition 28.1.1. A continuous map p : X̃ → X is a covering map if X and X̃ are non-empty
path connected spaces, and given any x ∈ X, there exists some open set Ux containing x such that
p−1(Ux) is a disjoint union of open sets Vj such that p|Vj : Vj → Ux is a homeomorphism for some
indexing set J . The open sets Ux are are called elementary open sets. X̃ is a covering space
of X.

If we give basepoints b̃ and b such that p(b̃) = b, then p : (X̃, b̃) → (X, b) is a based covering
map.

Example 28.1.2. There is a covering map p : R→ S1 with t 7→ exp(2πit).
Given x ∈ S1, take Ux to be the open semi-circle with x as its midpoint. For instance, p−1(U1) =⋃

n∈Z(n−
1
4 , n+ 1

4).

Example 28.1.3. For any nonzero integer n, the map S1 → S1 by z 7→ zn is also covering.

Example 28.1.4. Let RPn be the set of 1-dimensional subspaces of Rn+1. Define p : Sn → RPn
to be the map that sends a point y ∈ Sn to the 1-dimensional subspace through y.

For each point x ∈ RPn, p−1(x) is two points. Take the quotient topology induced by p. Then,
taking Ux sufficiently small, p−1(Ux) is two copies of Ux, and the restriction gives a homeomorphism
onto Ux. Thus, p is a covering map.

Proposition 28.1.5. Let p : X̃ → X be a covering map. Then,

1. p is an open mapping

2. for x1, x2 ∈ X, p−1(x1), p
−1(x2) have the same cardinality on J

3. p is surjective

4. p is a quotient map

Proof. (i) Let U be an open set in X̃. For any y ∈ U , we wish to find an open set p(y) contained
in p(U). Let Vj be the copy of Up(y) in p−1(Up(y)) that contains y. As the restriction of p to Vj is a
homeomorphism, p(Vj ∩ U) is open in X. This is an open set containing p(y) in p(U).

(ii) The cardinality of p−1(x) is locally constant on X̃. As X̃ is connected, it must be globally
constant

(iii) As X̃ is nonempty, p−1(x) is nonempty for some x ∈ X. As the cardinality is constant,
p−1(x) is nonempty for any x ∈ X, thus p is surjective.

(iv) A surjective open mapping is a quotient map.

Definition 28.1.6. The degree of a covering map p : X̃ → X is the cardinality of p−1(x) for any
x ∈ X.

Definition 28.1.7. If p : X̃ → X is a covering map and f : Y → X is a map, then a lift of f is a
map f̃ : Y → X̃ such that pf̃ = f . Equivalently, the following diagram commutes:

X̃

Y X

p
f̃

f
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Example 28.1.8. Given a covering map p : R → S1 from before, the map f : I → S1 sending
t 7→ exp(2πit) lifts to f̃ : I → R, where f̃(t) = t.

Conversely, the identity map from S1 → S1 does not lift, as if a lift f̃ : S1 → R existed, then by
commutativity, f̃(1) = n for some n ∈ Z. This induces a commutative diagram,

π1(R, n)

π1(S
1, 1) π1(S

1, 1)

p∗
f̃∗

id

which is impossible, as π1(R) is trivial, whereas π1(S1) is nontrivial.

Theorem 28.1.9 (Uniqueness of lifts). Let p : X̃ → X be a covering map, and let f : Y → X be
a map, where Y is connected. Suppose that g and h are lifts of f and that g(y0) = h(y0) for some
y0 ∈ Y . Then g = h.

Proof. Let C = {y ∈ Y | g(y) = h(y)}. By y0 ∈ C, C is nonempty. We show that C is closed and
open, and as Y is connected, it is the entirety of Y .

As p is a covering map, there is an elementary open set Uf(y) containing f(y) for any y ∈ Y ,
and open sets V1, V2 in X̃ such that p|V1 and p|V2 are homeomorphisms from V1 and V2 to Uf(y) and
g(y) ∈ V1, h(y) ∈ V2.

Now let y ∈ Y − C. Then V1 ∩ V2 = ∅. Thus, g−1(V1) ∩ h−1(V2) is contained in Y − C. This is
an open set containing y, so Y − C is open.

Suppose that y ∈ C. Then V1 = V2. Taking g−1(V1)∩ h−1(V2), we have p ◦ g = p ◦ h. As p|V1 is
an injection, g = h on this set. Thus it is in C. This is an open set containing y, so C is open.

Theorem 28.1.10 (Path Lifting). Let p : X̃ → X be a covering map. Let α : I → X be a path
with α(0) = x. Given x̃ ∈ p−1(x), α has a lift α̃ : I → X̃ such that α̃(0) = x̃.

Proof. Let A = {t ∈ I | there exists a lift of α|[0,t] starting at x̃}. A is nonempty, as it contains 0.
Take T to be the supremum of A. Pick an elementary open set Uα(T ) around α(T ).

Pick an ϵ > 0 such that (T − ϵ, T + ϵ)∩ [0, 1] is mapping into Uα(T ) by α. Let t = max{0, T − ϵ
2}.

Let α̃ : [0, t]→ X̃ be a lift of α|[0,t] starting at x̃.
Let Vj be the copy of Uα(T ) in p−1(Uα(T )) that contains α̃(t). The homeomorphism Uα(T ) ∼= Vj

specifies a way of extending α̃ to a lift of α|[0,T+ϵ]∩[0,1]. This implies T = 1. Hence A is all of I, and
thus α̃ has been defined on all [0, 1].

Theorem 28.1.11 (Homotopy Lifting). Let p : X̃ → X be a covering map. Let Y be a space, and
let H : Y × I → X be a map. If h is a lift of HY×{0}, then H has a unique lift H̃ : Y × I → X̃ such
that H̃|Y×{0} = h.

Proof. TODO!! Omitted for revision sake

Remark 28.1.12. When Y = {∗}, then it always exists by Path lifting.

Corollary 28.1.13. If p : (X̃, b̃) → (X, b) is a based covering map, then p∗ : π1(X̃, b̃) → π1(X, b)
is an injection.

Proof. Let ℓ be a loop in X̃ based at b̃. Then p ◦ ℓ is a loop in X based at b. Suppose that
p∗[ℓ] = [p ◦ ℓ] is trivial in π1(X, b), and let H : I × I → X be the homotopy relative to ∂I between
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p ◦ ℓ and cb. Now ℓ is a lift of H|I×{0}. Thus by Homotopy Lifting, there is a lift H̃ : I × I → X̃ of
H such that H̃|I×{0} = ℓ.

Now, H̃{0}×I , H̃{1}×I , H̃I×{1} are all constant maps, as the lift of a constant map is constant, as
p−1(b) is discrete, and continuous functions map path-connected sets to path-connected sets. Thus,
they must all be b̃, as this is where ℓ sends ∂I. In particular, H̃ is a homotopy relative to ∂I between
ℓ and cb̃. Thus [ℓ] is trivial in π1(X, b), giving p∗ to be an injection.

Remark 28.1.14. Fix a based covering map p : (X̃, b̃) → (X, b). If two loops ℓ and ℓ′ based at
b are homotopic relative to ∂I, they can be lifted to paths ℓ̃ and ℓ̃′ starting at b̃. By the previous
corollary, they are homotopic relative to ∂I.

Thus, ℓ̃(1) = ℓ̃′(1)

Definition 28.1.15. Noting the above remark, define a function

π1(X, b)
λ→ p−1(b)

by [ℓ] 7→ ℓ̃(1).

Proposition 28.1.16. Fix a based covering map p : (X̃, b̃) → (X, b). Given elements g1, g2 of
π1(X, b), λ(g1) = λ(g2) if and only if g1 and g2 belong to the same right coset of p∗π1(X̃, b̃). This
induces a bijection between right cosets of p∗π1(X̃, b̃) and points of p−1(b).

X̃ p−1(b) π1(X̃, b̃)

X right cosets of p∗(π1(X̃, b̃)) π1(X, b)

p

⊇

p∗
λ

Proof. Let ℓ1 and ℓ2 be loops based at b such that [ℓi] = gi. Suppose that ℓ̃1(1) = ℓ̃2(1). Then
ℓ̃1 · ℓ̃−1

2 is a loop based at b̃. The map p sends this to ℓ1ℓ̇−1
2 , so

[ℓ1][ℓ2]
−1 = p∗[ℓ̃1̇̃ℓ

−1
2 ] ∈ p∗π1(X̃, b̃)

Thus g1 and g2 belong to the same right coset of p∗π1(X̃, (̃b)).
Conversely, suppose that [ℓ1] and [ℓ2] belong to the same right coset of p∗π1(X̃, b̃) such that

[ℓ1][ℓ2]
−1 ∈ p∗π1(X̃, b̃). Then ℓ1ℓ̇−1

2 is homotopic relative to ∂I to p ◦ ℓ for some loop ℓ in X̃ based
at b̃. This homotopy lifts to a homotopy relative to ∂I between ℓ and a lift of ℓ1ℓ̇−1

2 . Thus, ℓ1ℓ̇−1
2

lifts to a loop based at b̃. The lift is ẽll1.ℓ̃−1
2 . Thus ℓ̃1(1) = ℓ̃2(1).

Corollary 28.1.17. A loop ℓ in X based at b lifts to a loop based at b̃ if and only if [ℓ] ∈ p∗π1(X̃, b̃).

Proof. ℓ lifts to a loop based at b̃ if and only if λ[ℓ] = b̃, but tildeb corresponds to the identity coset
of p∗π1(X̃, b̃), in particular [ℓ] ∈ p∗π1(X̃, b̃).

Remark 28.1.18. When p∗π1(X̃, b̃) is a normal subgroup of π1(X, b), the right cosets form a
group in which we can quotient by, and is bijective with p−1(b). To see the group structure from
the quotient, consider the following. Let ℓ̃1 and ℓ̃2 be paths from b̃ to b1 and b2 respectively. Then
ℓ1 = p ◦ ℓ̃1 and ℓ2 = p ◦ ℓ̃2 are loops in X based at b such that λ([ℓi]) = bi. To compute λ([ℓ1].[ℓ2]),
lift ℓ1.ℓ2 to a path based at b, and then b1.b2 is the endpoint. Alternatively, take the lift of ℓ2 that
starts at b1.
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Definition 28.1.19. When X̃ is simply connected, a based covering map p : (X̃, b̃) → (X, b) is
known as the universal cover of X.

Remark 28.1.20. In this case, p−1(b) is bijective with π1(X, b), as π1(X̃, b̃) = {1}.

Corollary 28.1.21. The fundamental group of a circle is isomorphic to Z.

Proof. We give a uniersal cover R→ S1 in the usual sense, and then this bijectively corresponds to
p−1(1) = Z. Using the procedure above, this gives an isomorphism π1(S

1, 1) = Z.

Remark 28.1.22. The above proof works for any
∏
S1 by taking the universal cover Rn.

28.2 Uniqueness of Coverings

Definition 28.2.1. A space Y is locally path-connected if for each point y of Y and each neigh-
borhood V of y, there is an open neighborhood of y contained in V that is path-connected.

Example 28.2.2. Any 2-manifold is locally path-connected. In particular, simplicial complex is
locally path-connected.

Theorem 28.2.3 (Existence of Lifts). Let p : (X̃, b̃)→ (X, b) be a based covering map. Let Y be a
path-connected, locally path-connected space and let f : (Y, y0) → (X, b) be some map. Then f has
a lift f̃ : (Y, y0)→ (X̃, b̃) if and only if f∗π1(Y, y0) ⊆ p∗π1(X̃, b̃).

Definition 28.2.4. Two based covering spaces p : (X̃, b̃) → (X, b) and p′ : (X̃ ′, b̃′) → (X, b) are
equivalent if there is a homeomorphism f such that the following commutes:

(X̃, b̃) (X̃ ′, b̃′)

(X, b)

f

p p′

Theorem 28.2.5 (Uniqueness of Covering Spaces). Let X be a path-connected, locally path-
connected space, and let b be a basepoint in X. Then for any subgroup H of π1(X, b), there is
at most one based covering space p : (X̃, b̃)→ (X, b) up to equivalence such that p∗π1(X̃, b̃) = H.

Proof. Let p′ : (X̃ ′, b̃′) → (X, b) be another another covering such that p′∗π1(X̃ ′, b̃′) = H. Then by
Theorem 28.2.3, p′ admits a lift p̃′ : (X̃ ′, b̃′) → (X̃, b̃), and similarly for p, such that the following
commutes:

(X̃ ′, b̃′) (X̃, b̃) (X̃ ′, b̃′)

(X, b)

p̃′

p′

p̃

p
p′

By uniqueness of lifts (as the basepoints agree), p̃′p̃ = idX̃ , thus p̃′ is a homeomorphism, and so the
coverings are equivalent.

Theorem 28.2.6. Let K be a path-connected simplicial complex, and let b be a vertex of K. Then for
any subgroup H of π1(K, b) there is a based covering p : (K̃, b̃)→ (K, b) such that p∗π1(K̃, b̃) = H.
Moreover, K̃ is a simplicial complex and p is a simplicial map.

Corollary 28.2.7. Let K be a path-connected simplicial complex, and let b be a vertex of K. Then
there is precisely one based covering space up to equivalence for each subgroup of π1(K, b).
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Theorem 28.2.8 (Nielsen-Schreier). Any subgroup of a finitely generated free group is free.

Proof. Let F be the free group on n generators. Let X be the wedge of n circles, and let b be the
central vertex. Then π1(X, b) ≃ F . Taking any subgroup H of F , there is a based covering map
p : (X̃, b̃) → (X, b) such that p∗π1(X̃, b̃) = H. As p∗ is injective, so π1(X̃, b̃) ≃ H. By Theorem
28.2.6, X̃ is a simplicial complex and p is a simplcial map. As p is a local homeomorphism, X̃ can
contain only zero and one dimensional simplices. Hence X̃ is a graph, thus has free fundamental
group.

Remark 28.2.9. To construct the free generating set given a graph, take a maximal tree and use
those.

Remark 28.2.10. Lift exists iff image of lift is in image of covering map (as a fundamental group)
(so if there is a lift, it is a subgroup)

Theorem 28.2.11. Let G be a finitely generated group and let H be a finite index subgroup. Then
H is finitely presented.

Definition 28.2.12. Let p : X̃ → X be a covering map. Then a covering transformation is a
homeomorphism t : X̃ → X̃ such that the following commutes:

X̃ X̃

X

t

p p

Definition 28.2.13. A covering map p : (X̃, b̃) is regular if any two points of p−1b differ by a
covering transformation.

Theorem 28.2.14. Let p : (X̃, b̃)→ (X, b) be a regular covering map. Then p∗π1(X̃, b̃) is a normal
subgroup of π1(X, b).

Proof. Sketch, lifting α ∈ π1(X, b) takes you to a point α̃(1). Use regularity to transform ℓ to tℓ,
moving from a loop based at b̃ to α̃(1).

Theorem 28.2.15. Let p : (X̃, b̃) → (X, b) be a covering map, where X is locally path-connected.
Suppose that p∗π1(X̃, b̃) is a normal subgroup of π1(X, b). Then p is regular.

Proof. Sketch, use normality, transform path based at b̃′ to b̃, use subset argument to generate lift,
uniqueness of lifts to argue tt′ = id.

29 Notes

29.0.1 Cell attaching

We can view the attaching map as a pushout square:

Sn−1 X

Dn X ∪f Dn

f

When the attaching maps are homotopic, we can ‘slide’ along the attaching map on Φ : X ∪f
Dn → X ∪g Dn which is constant on X and the interior of the disk, and on the boundary, uses the
homotopy H to carry the gluing f continuously over to the gluing g.
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Example 29.0.1. The dunce-hat is contractible.

The attaching map onto the single loop 1-skeleton is homotopic to the identity on S1, so the resulting
space is homotopic to D2, which is contractible.

29.0.2 Aside on Contractible Spaces

Proposition 29.0.2. Let X be contractible and Y be any space. Then,

• X is path-connected

• X × Y ≃ Y

• Any f, g : Y → X are homotopic

• If Y is path connected, any two maps X → Y are homotopic

Proof. By contractibility, picking any basepoint x0 ∈ X, we have a homotopy H : X × I → X with
H(x, 0) = x and H(x, 1) = x0. Then for any x, the path γ(t) = H(x, t) runs from x to x0. This
proves (i).

The projector pY : X × Y → Y is a deformation with homotopy

(x, y) 7→ (H(x, t), y)

which in t = 1 collapses X to a single x0. This shows (ii)
Consider the function Kf : Y × I → X with Kf (y, t) = H(f(y), t). This gives a homotopy

f ≃ cx0 . By considering Kg and with transitivity of homotopy, we have f ≃ g.
The important part about mapso from contractible domains is that it essentially only depends

on a point it contracts to. That is, given f, g : Y → X, build homotopies

ft(x) = f(H(x, t))

such that at t = 0, we have f0(x) = f(x) and at t = 1, we have f1(0) = f(x0). In particular,
f ≃ cf(x0), and similarly for g. Finally, we connect the two constant paths via the homotopy that
path connects f(x0) and g(x0), as Y is path connected.

29.0.3 Aside on higher-dimensional balls

We specifically consider functions about Sn and their behavior with antipodal points.

Proposition 29.0.3. The antimpodal map α : Sn → Sn where α(x) = −x is homotopic to idSn

when n is odd.
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Proof. When n = 2k + 1 for some integer k, we note that

S2k+1 ⊆ R2k+2 = R2 ⊗ · · · ⊗ R2︸ ︷︷ ︸
k+1 copies

Now we can view a point on x ∈ S2k+1 as (x1, . . . , xk+1) where xi ∈ R2. Then we give explicit
homotopy

H(x, 0) = (x1, . . . , xk+1) = x

H(x, 1) = (Rπ(x1), . . . , Rπ(xk+1)) = (−x1, . . . ,−xk+1) = −x

where Rθ is the rotation in the plane by angle θ. Thus H is a homotopy id ≃ α

Proposition 29.0.4. If f, g : X → Sn never hit antipodes, they are homotopic. That is,

f(x) ̸= −g(x)

for all x ∈ X.

Proof. We consider the straightline homotopy in Rn+1, and then normalize it back to the sphere,
as they never pass through the origin. Thus, we take

H(x, t) =
(1− t)f(x) + tg(x)

||(1− t)f(x) + tg(x)||

29.0.4 Homotopic Equivalent Spaces

Proposition 29.0.5. The following are homotopy equivalent :

1. S1 ∨ S1

2. S1 × S1 with one point removed

3. R2 minus two distinct points

Proof. (i) ≃ (ii) is straightforward, by considering the cell complex of the torus, and noting that
removing a point acts as removing the 2-cell.

(i) ≃ (iii) by noting that removing two distinct points on R2 gives exactly the structure we
expect from S1 ∨ S1 up to retraction.

29.1 Additonal Properties about Spaces

Proposition 29.1.1. For any space X, the following conditions are equivalent:

• Every map S1 → X is homotopic to a constant map

• Every map S1 → X extends to a map D2 → X

• π1(X,x0) = 0 for all x0 ∈ X.
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Proof. (i) ⇒ (ii) Let f : S1 → X be null-homotopic, such that H : S1 × I → X is the homotopy
that takes f to cx for some x ∈ X. Now note that S1 × I is homeomorphic to the Annulus
{w ∈ C | 1 ≤ |w| ≤ 2}. The boundary components come from S1 × {0} and S1 × {1}, which under
H is sent to f and cx respectively. Noting that D2 = (S1 × [0, 1])/(S1 × {1}), we see the natural
extension that sends elements on the outside boundary to x.

(ii) ⇒ (i) If f : S1 → X extends to a f̃ : D2 → X, then precomposing with the deformation
ρ : D2 → {0} ⊆ D2, gives a homotopy from f to the constant map at f̃(0). Explicitly, we take the
retraction R : D2 × [0, 1]→ D2 with R(x, 0) = x and R(x, 1) = 0. Then, we construct a homotopy
H : S1 × [0, 1]→ X with H(z, t) = f̃(R(z, t)).

(ii) ⇔ (iii) If a loop S1 → X extends to a map D2 → X, then this is null homotopic. This
follows from the fact we have the square

cx0

cx0
cx0

ℓ

which is homotopic to the disk. Thus extendable implies every loop is trivial in π1(X). In the
other direction, we use the exact same argument in reverse to go from the square to the disk for an
extension.

Proposition 29.1.2. The fundamental group of a product splits. That is, given (X,x0) and (Y, y0)
be based spaces,

π1(X × Y, (x0, y0)) = π1(X,x0)× π1(Y, y0)

Proof. We give an explicit group isomorphism ϕ : π1(X,x0)× π1(Y, y0) by

ϕ([ℓ1], [ℓ2]) = [t 7→ (ℓ1(t), ℓ2(t))]

This is well-defined (concatenation of loops in factors goes to concatenation in the product). It is
injective by considering projections to X and Y , and is surjective as homotopies in the product are
exactly the pairs of homotopies in each factor.

Corollary 29.1.3. The torus has fundamental group Z2.

Proof. Immediate, noting that π1(S1 × S1) = π1(S
1)× π1(S1) = Z× Z.

Definition 29.1.4. A retraction of a space X onto a subspace A is a map r : X → A such that
ri = idA where i : A→ X is the inclusion map.

Example 29.1.5. There is no retraction map r : D2 → S1.
We note the induced map from S1 to D2 then S1 looks on the fundamental group looks like

Z 0 Zi∗ r∗

But the composition is clearly not the identity.
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Thus, every f : D2 → D2 has a fixed point. If for every x ∈ D2 we have f(x) ̸= x, then we can
draw a ray from f(x) to x and define the map r to be the assignment of x to the point the ray hits
on S1. This is a continuous retraction, but no such retraction exists.

Proposition 29.1.6. Given n > 2, none of R, R2, Rn are homeomorphic.

Proof. R is not homeomorphic to neither of these, as removing a point makes R disconnected but
not the others. For the case R2 and Rn, we note that removing a point from both gives S1 and
Sn−1, which have different fundamental groups, so are not homeomorphic.

Proposition 29.1.7. S2 is not homeomorphic to Sn for any n ̸= 2.

Proof. Use the fact Sn minus two points is homotopic to Sn−1.

Proposition 29.1.8. There is no retraction of the Möbius band onto its boundary.

Proof. Sketch: take the induced maps on fundamental groups, and note that the inclusion sends to
2Z.

Remark 29.1.9. Considering the Torus obtained by side identifications of a square, we can consider
the cell decomposition, such that removing a single disk about the center of the square is homotopic
to S1 ∨ S1. Reading back, the generators spell xyx−1y−1 on the generating set of π1(X, b).

Example 29.1.10. Let S be the two-holed torus. We obtain this via X, who is S1 × S1 minus a
disc D. Then we have

S = X1 ∪∂D X2

where X1 ∩X2 ≃ S1.
obtained by taking two copies of the torus, cutting them out about a disc and identifying them.

We will show that π1(S) is an amalgamated free product.
Then by Seifert Van Kampen, the fundamental group is simply

⟨x1, y1, x2, y2 | x1y1x−1
1 y−1

1 = x2y2x
−1
2 y−1

2 ⟩

And is an amalgamated free product induced by X1 ∪N ∗N X2 ∪N , where N is a slight-extension
of X1 and X2 who is homeomorphic to S1 × (0, 1).

Example 29.1.11. Some examples of simply connected covering spaces:

• If we consider the square with side identifications which is homeomorphic to the Möbius band,
the universal cover is the bundle of these over the real line in an infinite strip, with M̃ ≃ R×I

• The wedge S2 ∨ S1 has fundamental group Z, its universal cover is an infinite string along R
where we have a copy of S2 along each integer n ∈ Z

• The punctured plane R2{pt} has universal cover Ũ = R2 with covering map p(u, v) =
(eu cos v, eu sin v) (which comes from the mapping z 7→ ez).
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